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A metric is defined on the space of multidimensional histograms. Such histograms store in
the xth location the number of events with feature vector x; examples are gray level histograms
and co-occurrence matrices of digital images. Given two multidimensional histograms, each is
“unfolded” and a minimum distance pairing is performed using a distance metric on the
feature vectors x. The sum of the distances in the minimal pairing is used as the “match
distance” between the histograms. This distance is shown to be a metric, and in the one-dimen-
sional case is equal to the absolute difference of the two cumulative distribution functions.
Among other applications, it facilitates direct computation of the distance between co-occur-
rence matrices or between point patterns. The problem of finding a translation to minimize the
distance between point patterns is also discussed. © 1985 Academic Press, Inc.

1. INTRODUCTION

Multidimensional histograms are often used to characterize images. Co-occurrence
matrices [1, 2], for example, are used to characterize textures. In these two-dimen-
sional histograms, given a displacement « the (i, j) entry in the matrix indicates
how many pixel pairs at distance a apart have gray levels i and j, respectively. A
gray level histogram is a one-dimensional example, where the ith entry indicates the
number of pixels having gray level /. An image itself can be regarded as a
two-dimensional histogram, if we regard it as a distribution of photons, and bright
points indicate high concentration of photons.

A simple way to measure the distance between two multidimensional histograms
would be to use their vector distance, defined, e.g., as the sum of the absolute
differences between corresponding components. However, this distance measure
does not represent the underlying semantics of their features. As an example,
consider the following three eight-valued histograms: H, = (16,0,0,0,0,0,0,0) (all
16 pixels are 0); H; = (0,16,0,0,0,0,0,0) (all 16 pixels are 1); and H =
(0,0,0,0,0,0,16,0) (all 16 pixels are 6). Using vector distance, all three histograms
are equally far apart from each other. However, the gray level in the image of H, is
much closer to that of H, than to that of H,. The vector distance fails to indicate
this.

A distance metric for one-dimensional histograms that incorporates similarity
between features was suggested by Shen and Wong [3]. This measure is also a metric.
It involves “unfolding” the histogram, where each gray level is repeated as many
times as the value in its entry in the histogram. The unfolding of (3,0,0,2,1), for
example, is (0,0,0, 3,3,4). Note that for images of the same size, the sum of the
histogram entries must equal the number of pixels in the image; thus all unfolded
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histograms have the same length. The distance between two histograms is defined as
the sum of the pairwise distances between all pairs of points having the same
location in the two unfolded histograms. For example, to compute the distance
between A = (3,0,0,2,1) and B = (2,1,0,0,3) we unfold them into UF(A) =
(0,0,0,3,3,4) and UF(B) = (0,0,1,4,4,4). The distance will thenbe 0 + 0 + 1 + 1
+1 4 0= 3. We call the above distance “match-distance” as it is the minimal
distance of any matching of points in one histogram to points in the second
histogram.

In the one-dimensional case the match-distance is identical to the vector distance
between the two cumulative distribution functions. In the above example, let A and
B be the cumulative distributions of 4 and B, respectively. Thus A = (3,3,3,5,6)
and B = (2,3, 3,3,6). Their absolute vector distanceis 1 + 0 + 0 + 2 + 0 = 3, the
same as the “unfolded” match-distance.

In general, when the feature space is a subset of the real numbers, and the
distance between two feature values is their absolute difference, we can have another
equivalent definition for the unfolded match-distance using cumulative distribution
functions.

TueoreM 1. Let f(x), g(x) be two histograms from the real numbers, where a
delta function designates the location of a point. (A delta function is a function & such
that [® 8(x)dx =1 for all € > 0.) The requirement of equal numbers of points is
represented by [* f(x)dx = [©_g(x)dx. With distances between feature values
measured by the absolute difference, the match-distance between f and g is

J7N[ fya= [ g(e) driax.

—0o0 " — o0 — oo

Define F(x)= [* f(¢)dt, and G(x)= [* g(¢)dt. F(x) is the number of
points in the histogram f having values less than or equal to x, and similarly for
G(x). Since in the linear case points are paired sequentially for minimal matching
[3], at a point ¢ all possible points with value less than ¢ are paired. |F(t) — G(1)|
points, however, will be paired with points having higher value that 7. Thus for every
¢ the number of points with value less that ¢ paired with points having values higher
than ¢ is |F(t) — G(t)]. Therefore [® |F(t) — G(?)| is equal to the sum of all
pairwise distances in a minimal matching.

ExampLE. Let f=(0,1,1,1,0) and g = (2,0,0,0,1) be two histograms from the
set {1,2,3,4,5} to the natural numbers. Their match-distance using unfolding is as
follows:

UF(f)={2,3,4}; UF(g) = {1,1,5}, and

p(fog) =N —21+N-3[+[5-4=4
Using the new definition we have F and G displayed in Fig. 1, with a delta function
where a point is located. Their match distance is the shaded area in Fig le.

Comparison of histograms by their cumulative distribution functions has a long
history [15]. Unfortunately, there is no multidimensional extension to the distance
definition using cumulative distribution functions. The matching approach, yielding
identical results in one dimension, is extendible to the multidimensional case.
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F1G. 1. Match distance as an integral: (a) f, (b) F, (¢} g, (d) G, (e) F and G superimposed. Shaded
area is the match distance, area = 4.
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F1G. 2. Distance between distribution functions: (a) the density function U[0.5,2.5], (b) its distribu-
tion function, (c) the density function U[1,2], (d) its distribution function, (e) the shaded area is the
distance between the two distribution functions, area = 0.25.

The above distance definition is immediately extendible to functions p,g: R - R
such that [*°_p(x)dx = [®_g(x)dx < co. As a special case, this defines a dis-
tance metric between distribution functions. Figure 2 shows the distance between
two different uniform distributions.

In the following sections we generalize this one-dimensional histogram metric, and
introduce a metric between histograms of any dimension, which is also applicable to
point patterns. Use of this distance to compare texture features [7] gave better results
than vector distance.

2. A METRIC FOR MULTIDIMENSIONAL HISTOGRAMS

Let L be a set of descriptors having the metric p. Let f: L - N be a function
from L to the natural numbers, denoting the frequency of occurrence of each
descriptor / € L, and satisfying

Yi)=M

leL

where M is a constant. For gray level histograms, this restriction implies that only
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pictures of the same size M can be compared, and similarly for co-occurrence
matrices (ignoring border effects).

DEerFINITION 1. UF(f), the unfolding of f, is the multiset of elements of L, each
| € L appearing f(/) times.

DEFINITION 2. A matching of UF(f,) and UF(f) is a 1-1 pairing of the
elements of UF(f;) and UF(f)).

DErFINITION 3. The “match distance” p between f, and f. is the minimum sum
J

1

of pairwise distances for all possible matchings of UF(f;) and UF(f)).

ExaMmpLE. We will compute the match distance p for the following matrices, each
having M = 3:

2 0 0 1 0 0 0 0 0
fi=10 1 0f; Li=10 1 0f; =10 1 of
0 0 0 0 0 1 0 0 2

For distance p between the matrix entries (i, j) and (k, /) we use the city block
distance p{(7, j),(k, )} = |i — k| + |j — I|. The unfolded multisets are:

UF(f) = {(1.1),(1,1),(2,2)};  UF(f) = {(1,1),(2,2),(3,3)};
UF(f;) = {(2,2),(3,3).(3,3)}.
The elements (1,1) in UF(f;) and (3, 3) in UF(f;) appear twice, since f(1,1) = 2

and f,(3,3) = 2. The match distances using minimal matching of the unfolded sets
are:

p(f1, £2) = p{(1,1), (.1} + p{(1,1),(2,2)} +1{(2,2),(3,3)}

—0+2+2=4

o(for £3) = 1{(1,1),(2,2)} + p{(2,2),(3,3)} +1{(3,3),(3,3)}
—24+2+0=4

p(fi, £5) = r{(1,1),(2,2)} + 1{(1,1),(3,3)} +1r{(2,2),(3,3)}
=2+4+2=8.

It can be easily verified that the above matchings are minimal.
As a comparison to vector distances, let
0 1 0 1 0 0 0 0 0
g =10 1 0f g£=10 1 0} g=11 1 1].
01 0 0 0 1 0 0 0

Using vector distance all the g’s are equally far apart, but using the match distance
yields p(gy, £,) = p(&, 83) = 2 and p(gy, g&3) = 4. This result is in better agree-
ment with our intuitive notion of distance for these matrices.

THEOREM. The match distance p is a metric, provided p is a metric.

Symmetry and positivity follow from the properties of u as a metric. To prove the
triangle inequality let UF(f,) = {ay, a,," - -, ap ), UF(f,) = {by, by, -+, by}, and
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UF(f;) = {c1,¢y,"*+,¢p}. Let o and o be the permutations giving minimal match-
ings between f, f, and f,, f,, respectively. Then

o( /1, f)+ P(fz’f3) = Zl‘(an b,;) + Zu‘“(bw Coi
= Z{“(“n b,;) + .‘-"(bm', com‘)}
= Zﬂ(aiacum‘) 2P(f19f3)-

The first two equalities follow from the definitions of 7 and o. The first inequality
follows from the triangle inequality for g, and the last inequality follows since p is
the cost of a minimal matching.

The metric p will generally depend on the problem domain. In the case of gray
level histograms, for example, the distance between gray levels i and j might be
(i = j)%|i — j|, etc. When the feature space L takes values from the indices of
two-dimensional histograms, as in the case of co-occurrence matrices, p can be taken
as the city block, chessboard, or Euclidean distance. If L is a set of angles, p1 can be
defined as p(a, ) = min{|a — B}, 27 — |« — B]}.

3. COMPUTATIONAL COMPLEXITY

A heavy computational task when computing the match distance is to find the
minimum matching between two multisets of order M. Although this problem
appears at first glance to be combinatorial, there exist O(M?) algorithms for its
solution [4]. For co-occurrence matrices of images of size k X k, for example, we
have a complexity of O((k X k)*) = O(k®).

In some cases, however, the minimal matching can be done even faster. In
particular, when L is a subset of the real numbers, and p is the absolute difference,
the minimal matching can be computed very fast. This is the case when comparing
two gray level histograms, and is also the case discussed in [3]. A minimal matching
between ay, a,,- -+, ay, and by, b,,- - -, by, when {a,} and {b,} are sorted, is simply
{ay, by),{ay, by), -+, {ay, by). As a proof, notice that this claim is true for two
multisets of size two. For larger sets, examine any two pairs (a,, b,;) and
(@;41,b,¢41yy in a minimal matching. Their distance |a, — b,,| + |a,., — bl
must be minimal as part of the minimal matching. If 5, > b,(;+1y we can exchange
them without adding to the cost of the matching. Continuing in this way the
matching will eventually become (ay, b,),{a,, b,), -, {a,, by,». 1f the multisets
are initially sorted, the complexity of computing the match distance is O( M), and it
is O(M log M) otherwise. In most cases sorting both sets is not the only minimal
matching. If the sets have some elements in common, any of them can be matched
with the identical element in the other set, and the sorting could be carried out with
the remaining elements. If there are many identical elements, substantial speedup
might be gained.

Another interesting one dimensional problem arises in the case of cyclically
ordered features. Such features were also extensively treated in [3], where the
minimum was taken over all possible permutations. The authors of [3] used, as an
approximation, only the cyclic permutations of the ordered multiset. We shall now
prove that using these cyclic permutations is enough to find the minimum matching.
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This follows from the following observations:

(a) Let {{q;, b,;>} be a minimal matching. There exists a minimal matching in
which no arc (a,, b,;) includes another arc {(a, b,;). If {a;, b,;) < {a;,b,;), then
replace these two pairs by (a;,b,;) and {a,, b,;) yielding the same cost. Graphically,
we perform the substitutions as in Fig. 3.

(b) Using (a) to reduce the search space, and checking all possible combina-
tions, it can be verified that a minimal matching for the case M = 3 is possible with
a cyclically sorted permutation.

(c) In a minimal matching all triples {a,, b,;), {a;, b,;), {ay, b,;) must also be
minimal, and by (b) ¢ must be a cyclically sorted permutation on these three
elements. This implies that the entire matching is a cyclically sorted permutation.

An even faster algorithm for matching of cyclically ordered features, with the same
complexity as for linear features, appears in [8]. In the case where L is a set of
Euclidean coordinates, and p is the chessboard, city block, or Euclidean distance,
approximation algorithms can be found with complexity between O(M ) and O(M?)
[5,6].

Several basic approximation algorithms exist, where the quality of the approxima-
tion depends on the specific application. One approach is to pass a space filling
curve through the two matrices to be compared, the curve defining a mapping of the
multidimensional histogram into a one-dimensional histogram. These one-dimen-
sional histograms are then unfolded, and compared pointwise. Another approach is
to use a “greedy” algorithm: we first pair all possible points in one matrix to points
in the second matrix having the same coordinates. (This step corresponds to
subtraction of one matrix from the other.) We then pair all points in one matrix with
corresponding points at distance 1 in the second matrix, then all unpaired points in
one matrix with unpaired points in the second matrix at distance 2, etc. A third
approach is to recursively split the matrix into smaller regions [6]. When the regions
are small enough, points within the regions are arbitrarily matched.

4. NORMALIZATION

Normalization is needed when the multisets to be compared are of different sizes.
The problem is encountered, for example, when trying to compare the histograms of
pictures of different sizes. Different approaches are possible; a few of these are
described in this section.

A simple normalization is to duplicate all points in each set the same number of
times, such that both sets have a number of elements equal to the lowest common
multiple of the sizes of the two original sets. For example, to compare 4 = (1,0,1)
with B = (2,1,0) we multiply 4 by 3 and B by 2 and compare 4 = (3,0, 3) with
B = (4,2,0). The latter have the same total number of points.

a0 bo'j bai 9 gj bc,j be

Fi1G6. 3. Changing a pairing such that no arc will include another arc, without adding to the total arc
length.
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Another normalization method was used by Lavine er al. [14] for a point pattern
matching algorithm that required an equal number of features. They padded the
smaller feature set with random features having a distribution similar to the already
existing features. This normalization method, however, results in a distance which is
not a metric.

5. POSSIBLE APPLICATIONS

5.1. Texture Features

Co-occurrence matrices [1,2] are commonly used texture descriptors. In those
matrices, given a translation 8, the (i, j) entry in the matrix is the number of pixel
pairs at distance & apart having the corresponding gray levels i and j. The match
distance improves on the ordinary vector distance between co-occurrence matrices.
In both methods, an initial subtraction removes identical elements. The vector
distance just adds all difference elements after subtraction. In the match distance,
subtraction is the matching of all identical objects in the two sets. Rather than just
adding up the differences, the distances in a minimal matching between the positive
and negative elements of the difference are used.

Consider, for example, addition of 1 to every gray level in a picture. In this case
the co-occurrence matrix “slides” one point along the diagonal. The match distance
between the two corresponding co-occurrence matrices will always be equal to the
number of pixels. The vector distance, however, behaves differently for different
pictures. For an initial picture with all gray levels even, for example, the distance
between the co-occurrence matrices will be maximal: double the number of pixels.
For other pictures the distance can be as small as double the square root of the
number of pixels.

In another set of texture features [7], also represented by matrices, the match
distance gave improved discrimination compared to the vector distance.

5.2 Shape Matching

In [9,10,11] Parui and Dutta Majumder suggest several methods for measuring
shape and curve similarity. For shape dissimilarity, they suggest the mismatch area
between the two shapes after size, position, and orientation normalization. When
shapes are treated as planar point sets, the match distance can also be used as a
similarity measure.

When looking for a minimal matching between two point sets, identical elements
can always be paired together, and a minimal matching can be sought only for the
remaining elements. In the context of shape matching, pairing identical elements
leaves only the points in the mismatch area. Rather than simply counting the points
in the mismatch area, the match distance weighs them by their distance in a minimal
matching. As an example, consider matching the three shapes in Fig. 4. The
mismatch area in this case is the number of mismatched points, and is 12 for both
d(A, B) and d(4, C). For the match distance, however, the mismatched points are
paired as in the figure, and the match distance is the sum of all pairwise distances.
This gives d(A, B) = 12 and d(A4, C) = 24 (when chessboard distance is used as the
pairwise distance). The similarity of shape 4 to shape B is therefore revealed only by
using the match-distance.
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F1G. 5. Matching the two marked centroids yields a larger mismatch area than just matching the two
lower-left corners. Centroid matching, however, does minimize the match-distance (see text).

Size, position, and orientation normalization are often used to bring two objects
into maximum registration. The most commonly used method of normalization,
registering the two centers of gravity, does not minimize the distance between the
shapes (defined as the mismatch area) as desired. In Fig. 5, for example, the
normalization that brings the two marked centroids together yields a total mismatch
area of 64. With no position normalization, however, when the two lower-left corners
coincide, the total mismatch area is only 40. This example shows the inadequacy of
moment normalization for the shape distance using mismatch area.

Centroid normalization, however, does minimize the match distance between
point sets, when pairwise distances are squared. Given two sets of M points
{(x;» ¥)), {(X;, 7))}, and a matching that pairs every (x,, ;) with (X;, y;), the
distance between the sets under the translation ¢ is

S = Z[( 4 1) =)+ (= 1) =),

Setting the derivatives to zero shows that the distance between the sets is minimized
when the two centers of gravity are registered, regardless of the actual matching.
Thus, the match distance is the most natural distance to use when centroid
registration is performed.

5.3 Picture Comparison

As mentioned earlier, pictures themselves can be regarded as two-dimensional
histograms when viewed as distributions of photons, where bright points indicate
more photons than dark points.

Therefore, given two grey-level images, P = { p,;}, Q = {¢;;}, whereLp,; = Xq;;,
they can be compared using the match distance. When the above grey-level sum
is not equal for the two pictures, they can be normalized using the methods of
Section 4.
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Trying to compare two pictures using the match distance is not always meaning-
ful. A useful example, however, can be found in the problem of half-toning: printing
grey-level pictures using black and white only. The quality of the half-toning can be
defined using the match distance, as the need to have the same total “blackness” in
both the grey-level and the binary images implies that the two sums of grey-level
values are equal. Therefore, the black and white picture with minimal match distance
to the original grey-level picture will be the best half-toning. The match distance is
an improvement over measuring half-toning quality by human visual inspection.

6. CONCLUDING REMARKS

A distance metric has been described that can be used to compare matrices having
equal sums of elements. These matrices were called “multidimensional histograms”;
co-occurrence matrices are an example. This metric is applicable in several domains;
in addition to co-occurrence matrices, applications to shape matching and picture
half-toning were described.

This metric is shown to have many theoretical advantages over other methods, and
in the half-toning case is the only existing quantitative measure. Unfortunately,
computing the match distance is computationally expensive, and in some applica-
tions the added computation may not result in substantial improvement. However,
when other comparison methods fail to give desired results, the match distance
seems worth considering.
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