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Abstract

The most commonly used scheduling algorithm for parallel supercomputers is FCFS with

backfilling, as originally introduced in the EASY scheduler. Backfilling means that short jobs

are allowed to run ahead of their time provided they do not delay previously queued jobs (or at

least the first queued job). To make such determinations possible, users are required to provide

estimates of how long jobs will run, and jobs that violate these estimates are killed. Empirical

studies have repeatedly shown that user estimates are inaccurate, and that system-generated

predictions based on history may be significantly better. However, predictions have not been

incorporated into production schedulers, partially due toa misconception (that we resolve)

claiming inaccuracy actually improves performance, but mainly because underprediction is

technically unacceptable: users will not tolerate jobs being killed just because system predic-

tions were too short. We solve this problem by divorcing kill-time from the runtime prediction,

and correcting predictions adaptively as needed if they areproved wrong. The end result is a

surprisingly simple scheduler, which requires minimal deviations from current practices (e.g.

using FCFS as the basis), and behaves exactly like EASY as faras users are concerned; nev-

ertheless, it achieves significant improvements in performance, predictability, and accuracy.

Notably, this is based on a very simple runtime predictor that just averages the runtimes of the

last two jobs by the same user; counterintuitively, our results indicate that using recent data is

more important than mining the history for similar jobs. Allthe techniques suggested in this

paper can be used to enhance any backfilling algorithm, and are not limited to EASY.

CATEGORIES [D.4.7.f] Parallel systems,[D.4.1.e]Scheduling,[D.4.8.a] Measurements,[D.4.8.b] Modeling and

prediction,[D.4.7.a]Batch processing systems
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Figure 1: EASY backfilling reduces fragmenta-
tion. It would have been impossible to backfill job
4 had its length been more than 2, as the reservation
for job 3 would have been violated.
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Figure 2: The accuracy histogram is rather flat
when ignoring jobs that reached their estimate and
were killed by the system (100% peak) or that failed
on startup (0% hump).

1 Introduction

Backfilling. The default algorithms used by current batch job schedulersfor parallel supercom-

puters are all rather similar to each other [7]. In essence, they select jobs for execution in first-

come-first-serve (FCFS) order, and run each job to completion. The problem is that this simplistic

approach causes significant fragmentation, as jobs do not pack perfectly and processors are left

idle. Most schedulers therefore usebackfilling: if the next queued job cannot run because suf-

ficient processors are not available, the scheduler nevertheless continues to scan the queue, and

selects smaller jobs that may utilize the available resources.

A potential problem with this is that the first queued job may be starved as subsequent jobs

continually jump over it. The solution is making areservationfor this job, and allowing subsequent

jobs to run only if they respect it (Fig. 1). This approach wasoriginally introduced by EASY, the

first backfilling scheduler [25]. Many backfilling variants have been suggested since, e.g. using

more reservations, employing a non-FCFS wait queue order, etc. [11]. However, the default of

most parallel schedulers (e.g. Maui/Moab [15] and IBM’s load-leveler [18]) has remained plain

EASY [7], and it has been estimated that 90-95% of the installations do not change this default

configuration [14]. Indeed, while simple, backfilling dramatically improves utilization [17] and

yields comparable performance to that of more sophisticated algorithms [3, 38].

User Runtime Estimates. Backfilling requires the runtime of jobs to be known: both when com-

puting the reservation (requires knowing when processors of currently running jobs will become
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available) and when determining if waiting jobs are eligible for backfilling (must terminate before

the reservation). Therefore, EASY required users to provide a runtime estimate for all submitted

jobs [25], and the practice continues to this day. Jobs that exceed their estimates are killed, so as

not to violate subsequent commitments. The assumption is that users would be motivated to pro-

vide accurate estimates, because (1) jobs would have a better chance to backfill if their estimates

are tight, but (2) would be killed if they are too short.

Nevertheless, empirical studies of traces from sites that actually use EASY show that user

estimates are generally inaccurate [26]. This is exemplified in Fig. 2 showing a typical accuracy

(= 100 · runtime
estimate

) histogram: when only considering jobs that have terminatedsuccessfully we

get a rather uniform-like distribution, meaning any level of accuracy is almost equally likely to

happen. A possible reason is that users find the motivation tooverestimate — so that jobs will not

be killed — much stronger than the motivation to provide accurate estimates and help the scheduler

to perform better packing. Moreover, a recent study indicates that users are actually quite confident

of their estimates, and most probably would not be able to provide much better information [23].

Estimates also embody a characteristic that is particularly harmful for backfilling: they are

inherently modal, as users tend to choose “round” estimates(e.g. one hour) resulting in 90% of the

jobs using the same 20 values [35]. This modality limits the scheduler’s ability to exploit existing

holes in the schedule because all jobs look the same. Both inaccuracy and modality deteriorate

performance (Fig. 3; compare “orig” to “perfect”) and motivate searching for an alternative.

The Alternative. The search for better estimates has focused on using historical data. As users

of parallel machines tend to repeatedly do the same work [10], it’s conceivable historical data can

be used to predict the future (Fig. 4). Suggested predictionschemes include using the top of a 95%

confidence interval of job runtimes [13], a statistical model based on the (usually) log-uniform

distribution of runtimes [6], using the mean plus 1.5 standard deviations [26], and several other

techniques [30, 19, 20]. Despite all this work, backfill schedulers in actual use still employ user

estimates rather than history-based system-generated predictions, due to three difficulties: (1) a

technicality, (2) usability issues, and (3) misconceptions, to be described in detail next.This paper
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Figure 3: Average wait-time and bounded slow-
down of jobs improve when user estimates (“orig”)
are replaced by real runtimes (“perfect”). Doubling
helps both original estimates and perfect ones.
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Figure 4:Runtime and estimate of jobs by four ar-
bitrary SDSC users show remarkable repetitiveness.

is about refuting or dealing with these difficulties.

Technicality. The core problem is that it’s simply impossible to naively replace estimates with

system predictions, as these might turn out too short leading to premature killing of jobs according

to the backfilling rules. Suggested solutions have includedsimply ignoring it, using preemption,

employing test runs, or replacing backfilling by shortest job first (SJF) [13, 39, 28, 3, 2, 22].1

None of these retain the appeal of plain EASY. Mu’alem and Feitelson checked the extent of

the underprediction phenomenon, showed it to be significant(20% of the jobs), and concluded

that “it seems using system-generated predictions for backfilling is not a feasible approach” [26].

However, as we will show, solving this problem is actually quite simple: user estimates must serve

as kill times (part of the user contract), while system predictions can be used for everything else.

Usability. Previous prediction techniques have assumed that an important component is to iden-

tify the most similar jobs in the history, and base the predictions on them. To this end they em-

ployed genetic algorithms [30, 32], instance based learning [19], and rough set theory [20]. Unfor-

tunately, these are all much more complex than the EASY scheduler itself, and more importantly,

they require a training period which can be significant. For example, Smith et al. [30, 32] used

an entire trace to guide the selection of job templates, before evaluating their algorithm (on the

1Smith et al. didn’t specify how they utilized system predictions for backfilling [32].
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very same trace, using the selected templates). While in principle it’s possible to use such algo-

rithms on-line (repeatedly training on what’s available),the success of this approach along with

the overheads it entails remains to be evaluated.

In contrast, we show that even extremely trivial algorithms(e.g. using the average runtime of

two preceding jobs by the same user) result in significant improvement, both in the accuracy of

the prediction itself and in the resulting performance. We chose such a simple predictor in order

to focus on how predictions are integrated into backfilling schedulers, and not on the prediction

algorithm itself. However, our evaluations indicate that this was a fortuitous choice, and that

recency is actually more important than similarity when using historical data.

Misconceptions. Surprisingly, studies regarding the impact of inaccuracy have found that it ac-

tually improves performance [9]. This has even led to the suggestion that estimates should be

doubled[39, 26] orrandomized[28], to make them even less accurate. Doubling indeed exhibits

remarkable improvements (Fig. 3), which seemingly negatesthe motivation to incorporate mecha-

nisms for better predictions, deeming user estimates as “unimportant”. We solve this mystery and

show the “inaccuracy helps” myth is actually false in three respects.

First, doubling original user estimates indeed helps, but even more so if applied to perfect

estimates (Fig. 3; compare “origX2” to “perfectX2”). We show that doubling of good predictions

is similar: the more accurate original predictions are, themore the doubling is effective.

Second, we show that the reason doubling helps is because it allows shorter jobs to move for-

ward within an FCFS setting, implicitly approximating an SJF-like schedule. (Indeed, most studies

dealing with predictions indicate that increased accuracyimproves performance when shorter jobs

are favored [13, 32, 39, 28, 2]). This is obtained by gradually pushing away the start time of the

first queued job, in a kind of “heel and toe” dynamics that effectively trades off FCFS-fairness

for performance. A main contribution of this paper is showing this tradeoff can be avoided by

explicitly using ashortest job backfilled first(SJBF) backfilling order. By still preserving FCFS

reservation-order, we maintain EASY’s appeal and enjoy both worlds: a fair scheduler that never-

theless backfills effectively.
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abbre- trace site CPUs jobs start end utili- avg. runtime
viation version zation [minutes]
CTC 1.1 Cornell Theory Center 512 77,222 Jun 96 May 97 56% 123
KTH 1.0 Swedish Royal Instit. of Tech. 100 28,490 Sep 96 Aug 97 69% 188
SDSC 2.1 San-Diego Supercomputer Center 128 59,725 Apr 98 Apr 00 84% 148
BLUE 2.1 San-Diego Supercomputer Center1,152 243,314 Apr 00 Jun 03 76% 73

Table 1:Traces used to drive simulations. All were recorded on IBM SPmachines. The first three use the
EASY scheduler. The fourth (SDSC Blue Horizon) uses the LoadLeveler infrastructure and the Catalina
scheduler (also performs backfilling and supports reservations). Further details can be found in [27].

The third fallacy in the “inaccuracy helps” claim is the underlying implied assumption that pre-

dictions are only important for performance. In fact, they are also important for various functions.

One example is advance reservations for grid allocation andco-allocation, shown to considerably

benefit from better accuracy [19, 31, 24]. Another is scheduling moldablejobs that may run on

any number of nodes [6, 32, 4]. The scheduler’s goal is to minimize response time, considering

whether waiting for more nodes to become available is preferable over running immediately. Thus

a reliable prediction of how long it will take for additionalnodes to become available is crucial.

Roadmap. This rest of the paper is structured thus. After describing our methodology (Sec. 2),

we explain how prediction-based backfilling is done and demonstrate the improvements (Sec. 3–

4). We show the generality of our techniques (Sec. 5), face the above misconceptions (Sec. 6),

investigate the optimal parameter settings for our algorithms (Sec. 7), and conclude (Sec. 8).

2 Methodology

The experiments are based on an event-based simulation of EASY scheduling, where events are

arrivals and terminations. Upon arrival, the scheduler is informed of the number of processors the

job needs and its estimated runtime. It can then start the job’s simulated execution or place it in a

queue. Upon a job termination, the scheduler is notified and can schedule other queued jobs on the

free processors. Job runtimes are part of the simulation input, but are not given to the scheduler.

Tab. 1 lists the four traces we used to drive the simulations.As suggested in the Parallel Work-

loads Archive [27], we are using their “cleaned” versions [12, 37]. Since the traces span the past

decade, were generated at different sites, on machines withdifferent sizes, and reflect different
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load conditions, we have reason to believe consistent results obtained in this paper are truly repre-

sentative. Traces are simulated using the exact data provided, with possible modifications as noted

(e.g. to check the impact of replacing user estimates with system generated predictions).

The performance is measured using average wait-time and bounded slowdown. LetTw and

Tr denote a job’s wait- and run-time, respectively.Tw is the period between the job’s submit-

tal and start time.2 Slowdown is response time normalized by running time:Tw+Tr

Tr
. Bounded

slowdown eliminates the emphasis on very short jobs (e.g. with zero runtime) due to having the

runtime in the denominator; a commonly used threshold of 10 seconds was set yielding the for-

mula: max
(

1 , Tw+Tr

max(10,Tr)

)

. To reduce warmup and cooldown effects, the first 1% of terminated

jobs and those terminating after the last arrival were not included in the metrics averages [16].

The measure ofaccuracyis the ratio of the real runtime to the prediction. If the prediction

is larger than the runtime, this reflects the fraction of predicted time that was actually used. But

predictions can also be too short. Consequently, to avoid under- and over-prediction canceling

themselves out (when averaged), we define

accuracy =







1 if P = Tr

Tr/P if P > Tr

P/Tr if P < Tr

whereP is the prediction; the closer the accuracy is to 1 the more accurate the prediction. This is

averaged across jobs, and also along the lifetime of a singlejob, if the system updates its prediction.

In that case a weighted average is used, where weights reflectthe relative time that each prediction

was in effect. More formally, given a jobJ , its weighted accuracy is
∑N

i=1 Ai ·
(

Ti − Ti−1

TN − T0

)

where

T0 andTN areJ ’s submission and termination time, respectively, andAi is the accuracy of the

prediction ofJ that was in effect from timeTi−1 to timeTi.

2We prefer using average wait-time over response-time(Tw+Tr), because for batch systems the difference between
them is a constantC, regardless of the scheduler being used.C is the average runtime, as1

n

∑

(Tw + Tr) = 1

n

∑

Tw+
1

n

∑

Tr = 1

n

∑

Tw + C. SinceC is a given that is unaffected by the scheduler, preferring wait-time implies focusing
only on the scheduling activity and neutralizing the highlyvariable average runtime (Tab. 1).
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3 Incorporating Predictions into Backfilling Schedulers

The simplest way to incorporate system-generated predictions into a backfilling scheduler is to use

them in place of user-provided estimates.3 The problem of this approach is that aside from serv-

ing as a runtimeapproximation, estimates also serve as the runtimeupper-bound(kill-time). But

predictions might happen to be shorter than actual runtimes, and users will not tolerate their jobs

being killed just because the system speculated they were shorter than the user estimate. So it is not

advisable to just replace estimates by predictions. Previous studies have dealt with this difficulty

either by: eliminating the need for backfilling (e.g. using pure SJF [13, 32]), employing test runs

[28, 2, 22], assuming preemption is available (so jobs that exceed their prediction can be stopped

and reinserted into the wait queue [13, 3]), or considering only artificial estimates generated as mul-

tiples of actual runtimes (effectively assuming underprediction never occurs) [39, 28, 2, 33, 34].

Mu’alem and Feitelson noted this problem, and investigatedwhether underprediction does in fact

occur when using a conservative predictor (average of previous jobs with the same user / size /

executable, plus11
2

times their standard deviation) [26]. They found that∽20% of the jobs suf-

fered from underprediction and would have been killed prematurely by a backfill scheduler. They

therefore suggested that system-generated predictions for backfilling is not a feasible approach.

3.1 Separating the Dual Roles of Estimates

The key idea of our solution is recognizing that the underprediction problem emanates from the

dual role an estimate plays: both as a prediction and as a kill-time. We argue that these should be

separated. It is legitimate to kill a jobonce its user estimate is reached, but not any sooner; there-

fore the main function of estimates is to serve as kill-times. All other scheduling considerations

should be based uponthe best available predictionsof how long jobs will run; this can be the user

estimate, but it can also be generated by the system, and moreover, it can change over time.

The system-generated prediction algorithm we use is very simple. The prediction of a new job

3Note the terminology: we will consistently use “estimate” for the runtime approximation provided by the user
upon job submittal, and “prediction” for the approximationas used by the scheduler (which is system-generated
unless stated otherwise). For EASY, predictions and estimates are equal, that is, the predictions are set to be the user
estimates. The alternative is to use historical data to generate better predictions, as we do in this paper.
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J is set to be the average runtime of the two most recent jobs that were submitted by the same user

prior to J and that have already terminated. If no such jobs exist we fall back on the associated

user estimate (other ways to select the history jobs are considered in Sec. 7). If a prediction turns

out higher than the job’s estimate it is discarded, and the estimate is used, because the job would

be killed anyway when it reached its estimate. Implementingthis predictor is obviously trivial.

Nevertheless, as shown below, this simple predictor is enough to significantly improve the accuracy

of the data used by the scheduler, which is sufficient for our needs in this paper. Investigation of

the effect of better predictors is left for future work.

3.2 Prediction Correction

A reservation computed based on user estimates will never besmaller than the start time of the

associated job, as estimates are runtime upper bounds.4 This is no longer true for predictions,

as they are occasionally too short. At the extreme, predictions might erroneously indicate that

certain jobs should have terminated by now and thus their processors should be already available.

Assuming there aren’t enough processors for the first queuedjob J , this discrepancy might lead to

a situation whereJ ’s reservation is made for the present time, because the scheduler erroneously

thinks the required processors should already be available.

Note that the backfill window is between the current time (lower bound) and the reservation

(upper). When these are made equal, backfill activity effectively stops5 and the scheduler largely

reverts to plain FCFS, eliminating the potential benefits ofbackfilling (Fig. 5, left/middle). Indeed,

when naively replacing estimates with predictions, the average accuracy significantly improves (up

to doubled), but performance is nevertheless dramaticallyworsened (up to an order of magnitude).

The solution is to modify the scheduler to increase expired predictions proven to be too short.

For example, if a job’s prediction indicated it would run for10 minutes, and this time has already

passed but the job is still running, we must generate a new prediction. The simplest approach is to

acknowledge that the user was smarter than us and set the new prediction to be the user’s estimate.

4Apparently, this is not always the case in practice, as will shortly be described.
5The only remaining backfill activity is on the expense of the “extra” processors, which are the “leftover” after

satisfying the reservation for the first queued job [25, 26].
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(left). This misconception prevents jobs 3 and 4 from being backfilled (middle). Correcting the prediction
once proved wrong enables the scheduler to reschedule the reservation and re-enables backfilling (right).

Once the prediction is updated, this affects reservations for queued jobs and re-enables backfilling

(Fig. 5, right). While this may undesirably delay the reservations made for queued jobs, such

delays are still bounded by the original runtime estimates of the running (underpredicted) jobs.

On rare occasions prediction correction is necessary even beyond the estimate, as in real sys-

tems jobs sometimes exceed their estimates (Fig. 6, bottom). In most cases the overshoot is very

short (not more than a minute) and probably reflects the time needed to kill the job. But in some

cases it is much longer, for unknown reasons. Regardless of the exact reason, the prediction should

be extended to keep the scheduler up to date (independent of the fact the job should be killed, and

maybeis being killed). As most of these jobs only exceed their estimate by a short time, we enlarge

post-estimate predictions in a gradual manner: The first adjustment adds only one minute to the

old prediction. This will cover the majority of the underestimated jobs (Fig. 6, top). If this is not

enough, theith prediction correction adds15 × 2i−2 minutes (15min, 30min, 1h, 2h, etc.).

The results of adding prediction correction are shown in Tab. 2. This compares the origi-

nal EASY with a version that uses user estimates as predictions and adds prediction correction

(EASYPCOR), and a version that combines prediction correction with system-generated predic-

tions (EASY+). Note that while EASYPCOR employs user estimates as predictions, correction is

still needed to handle the underestimated jobs discussed earlier. Prediction-correction by itself has

only a marginal effect, because only a small fraction of the jobs are grossly underestimated. The

real value of prediction correction is revealed in EASY+, where system-generated predictions are

added: results show a significant and consistent improvement of up to 28% (KTH’s slowdown in

Tab. 2). This is an important result that shouldn’t be taken lightly. The fact that historical infor-
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Figure 6:Bottom: up to 10% of the jobs have runtimes bigger than user estimates. Top: CDF of differences
between runtimes and estimates, of underestimated jobs. Most estimate violations are less than one minute.

trace wait [minutes] b. slowdown accuracy[%] avg. corr.[±σ]
EASY EASY EASY

+
EASY EASY EASY

+
EASY EASY EASY

+
EASY EASY

+

PCOR all PCOR PCOR PCOR

SDSC 363 360 -1% 326 -10% 99 93 -6% 86 -13% 32 32 +0% 60 +87% 0.09±0.33 0.56±0.64

CTC 21 21 +0% 16 -26% 4.6 4.5 -2% 3.3 -27% 39 39 +0% 62 +61% 0.12±0.41 0.63±0.69

KTH 114 115 +1% 96 -16% 90 90 +1% 65 -28% 47 47 +0% 60 +28% 0.02±0.24 0.53±0.57

BLUE 130 128 -1% 102 -21% 35 36 +1% 26 -25% 31 31 +0% 61 +100% 0.13±0.48 0.60±0.69

avg. -0% -18% -2% -23% +0% +69% 0.09 0.58

Table 2:Average performance, accuracy, and overhead for schedulervariants. EASYPCOR adds prediction
correction, and EASY+ also adds system generated predictions. Shaded columns give changes relative to
EASY in percents; negative values are good for wait time and slowdown, while positive ones are good for
accuracy. Right most metric shows the per-job average prediction-correction number (± std. deviation).

mation can be successfully used to generate runtime predictions is known for more than a decade

[10]. Our results in Tab. 2 demonstrate for the first time thatthis may be put to productive use

within backfilling schedulers, without violating the contract with users. Moreover, the overhead is

low, with predictions corrected only 0.56–0.63 times on average per job.

Note that obtaining the reported improvement is almost free. All one has to do is create pre-

dictions as the average runtime of the user’s two most recentjobs and set an alarm event to correct

those predictions that prove too short. Importantly, this does not change the way users view the

scheduler, allowing the popularity of EASY to be retained. Finally, note that this scheme signif-
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icantly improves the average accuracy, which can be up to doubled (BLUE) and is stabilized at

60–62% across all four traces when using EASY+.

3.3 Shortest Job Backfilled First (SJBF)

A well known scheduling principle is that favoring shorter jobs significantly improves overall

performance. Supercomputer batch schedulers are one of thefew types of systems which enjoy a-

priori knowledge regarding runtimes of scheduled tasks, whether through estimates or predictions.

Therefore, SJF scheduling may actually be applied. Moreover, several studies have demonstrated

that the benefit of accuracy dramatically increases if shorter jobs are favored [13, 32, 39, 28, 2, 29].

For example, Chiang et al. [2] show that when replacing user estimates with actual runtimes, while

ordering the wait queue by descending
√

Tw+Tr

Tr
+ Tw

100
, average and maximal wait times are halved

and slowdowns are an order of magnitude lower.6

Contemporary schedulers such as Maui can be configured to favor (estimated) short jobs, but

their default configuration is essentially the same as in EASY [7] (SJF is the default only in PBS).

This may perhaps be attributed to a reluctance to change FCFS-semantics perceived as being the

most fair. Such reluctance has probably hurt previously suggested non-FCFS schedulers, that

impose the new ordering as a “package deal”, affecting both backfilling and reservation order (for

example, with SJF, a reservation made for the first queued jobhelps the shortest job, rather than

the one that has been delayed the most). In contrast, we suggest separating the two.

Our scheme introduces a controlled amount of “SJFness”, butpreserves EASY’s FCFS nature.

The idea is to keep reservation order FCFS (as in EASY) so thatno job will be backfilled if it

delays the oldest job in the wait queue. In contrast, backfilling is done in SJF order, that is,

Shortest Job Backfilled First — SJBF. This is acceptable because the first-fit essence of backfilling

is a departure from FCFS anyway. We argue that in any case, explicit SJBF is more sensible than

“tricking” EASY into SJFness by doubling [39, 26] or randomizing [28] estimates (see Sec. 6).

Results of applying SJBF are shown in Tab. 3. In its simplest version this reordering is used

6Recall thatTw andTr are wait- and run-times. Short jobs are favored since the numerator of the first term rapidly
becomes bigger than its denominator. The second term is added in an effort to avoid starvation.
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trace wait [minutes] b. slowdown accuracy[%]
EASY EASY EASY

++
PERF ECT

++
EASY EASY EASY

++
PERF ECT

++
EASY EASY EASY

++
PERF ECT

++

SJBF SJBF SJBF

SDSC 363 361 -0% 327 -10% 278 -23% 99 87 -12% 70 -29% 58 -42% 32 32 +0% 60 +87%100 +211%
CTC 21 19 -10% 14 -33% 19 -10% 4.6 3.9-14% 2.9 -37% 2.8 -39% 39 39 +0% 62 +61%100 +158%
KTH 114 102-11% 95 -17% 91 -20% 90 73 -19% 57 -36% 50 -44% 47 47 +0% 61 +28%100 +111%
BLUE 130 102-21% 87 -33% 87 -33% 35 21 -42% 19 -47% 13 -64% 31 31 +0% 62 +102%100 +225%

avg. -10% -23% -22% -22% -37% -47% +0% +70% +176%

Table 3:Average wait, bounded slowdown, and accuracy of EASY compared with three improved variants.
EASYSJBF just adds SJF backfilling (based on original user estimates). EASY++ employs all our opti-
mizations: system-generated predictions, prediction correction, and SJBF. PERFECT++ is the optimum,
using SJBF with perfect predictions. Shaded columns show improvement relative to traditional EASY.

with conventional EASY (i.e. using user estimates and no prediction correction). Even this leads

to typical improvements of 10–20%, and up to 42% (BLUE’s bounded slowdown).

Much more interesting is EASY++ which adds SJBF to EASY+ (namely combines system-

generated predictions, prediction correction, and SJBF).This usually results in double to triple

the performance improvement in comparison to EASYSJBF and EASY+. Performance gains are

especially pronounced for bounded slowdown (nearly halvedin BLUE). There is also a 33% peak

improvement in average wait (CTC and BLUE). This is quite impressive for a scheduler with

basic FCFS semantics that differs from EASY by only a few dozens lines of code. Even more

impressive is theconsistencyof the results, which all point to the same conclusion, as opposed

to other experimental evaluations in which results depended on the trace or even the metric being

used [32, 8]. The accuracy of EASY++ is similar to that of EASY+ at 60–62%.

Finally, we have also checked the impact of having perfect predictions when SJBF is employed

(here there is no meaning to prediction correction as predictions are always correct). It turns out

PERFECT++ is marginally to significantly better than EASY++ with the difference being most

pronounced in SDSC, the site with the highest load (Tab. 1; further discussed below). Interestingly,

EASY++ outperforms PERFECT++ in CTC’s average wait. This is due to subtle backfill issues

and a fundamental difference between CTC and the other logs,as analyzed by Feitelson [8].

3.4 Varying the Load

All results in this paper evaluate our suggested optimizations using the workloads “as is”. Here,

through trace manipulation, we complement our measurements by investigating the effect of load.
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Figure 7: The relative performance of EASY+ and EASY++ typically improves with medium or higher
loads.

Load is artificially varied by multiplying all arrival timesby a constant (e.g. if BLUE’s original

load is 76%, we can raise it to 80% by multiplying all arrival times by 76
80

). Results show that

PERFECT++ is better than EASY++, which is better than EASY+, which is better than EASY

(Fig. 7). Higher loads usually intensify the trends pointedout earlier, but the precise effect of the

optimizations is workload dependent. EASY++ benefits are relatively small in SDSC, especially

under high loads; for KTH the biggest improvement occurs forintermediate loads of around 70–

80%; for CTC, the improvement over EASY grows with load, and is most significant towards 90%.

Examining PERFECT++, we see that in all cases accuracy becomes crucial as load conditions

increase, generating a strong incentive for developing better prediction schemes.

4 Predictability

Previous sections have shown that, on average, replacing user estimates with system-generated

predictions is beneficial in terms of both performance and accuracy. However, when abandoning

estimates in favor of predictions, we might losepredictability: The original backfilling rules state

that a jobJb can be backfilled if its estimated termination time does not violate the reservation

time R1 of the first queued jobJ1. SinceJb is killed when reaching its estimate, it is guaranteed

thatJ1 will indeed be started no later thanR1. However, this is no longer the case when replacing

estimates with predictions, asR1 is computed based on predictions, but jobs are not killed when

their predicted termination time is reached; rather, they are simply assigned a bigger prediction.

For example, ifJb is predicted to run for 10 minutes andR1 happens to be 10 minutes away, then

Jb will be backfilled, even if it was estimated to run for (say) three hours. Now, if our prediction
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turned out to be too short andJb uses up its entire allowed three hours,J1 might be delayed by

nearly 3 hours beyond its reservation.

Predictability is important for two main reasons. One is thesupport ofmoldablejobs [6, 32, 4],

that may run on any partition size (according to [5],∽98% of the jobs are moldable). Such jobs

trust the scheduler to decide whether waiting for more nodesto become available is preferable

over running immediately on what’s available now. Predictability is crucial for such jobs. For

example, a situation in which we decide to wait for (say) 30 minutes because it is predicted a

hundred additional nodes will be available by then, only to find that the prediction was wrong, is

highly undesirable. The second reason predictability is important is that it is needed to support

advance reservations. These are used to determine which of the sites composing a grid is able to

run a job at the earliest time [24], or to coordinate co-allocation in a grid environment [19, 31], i.e.

to cause cooperating applications to run at the same time on distinct machines. Note that in this

case underprediction is as bad as overprediction, e.g. for agrid broker that must select where to

dispatch a job. Knowing that resources would become available earlier could shift the balance.

The question is therefore which alternative (using estimates or predictions) yields more credible

reservation times. To answer it, we have characterized the distribution of the absolute difference

between a job’s reservation and its actual start time. This is only computed for jobs that actually

wait, become first, and get a reservation; jobs that are backfilled or started immediately don’t have

reservations, and are therefore excluded. A scheduler aspires to minimize both the number of jobs

that need reservations and the differences between their reservations and start times. Note that with

prediction correction a job may have multiple reservationsduring its life; we use the first for the

predictability measurements.

The predictor we use (in this section only) is slightly different from the one used in Sec. 3: in-

stead of using the last two jobs to make a prediction, we only use them if their estimate is identical

to that of the newly submitted job; otherwise, we fall back onthe user estimate. The reason is that

this is the optimal predictor in this case; a full discussionof the tradeoffs along with results for the

predictor used so far are given in Sec. 6. Results are shown inTab. 4. Evidently, the rate of jobs
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trace rate[% of jobs] avg. diff. [minutes] median diff.[minutes] stddev diff.[minutes]
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++

SDSC 17 14 -18% 15 -15% 171 93 -46% 91 -47% 64 20 -69% 19 -70% 471 174 -63% 168 -64%
CTC 6.8 5.4 -19% 5.7 -16% 51 29 -43% 27 -46% 8.3 2.2 -73% 1.9 -78% 92 74 -20% 69 -25%
KTH 15 14 -8% 14 -8% 38 35 -7% 35 -7% 6.3 3.2 -49% 3.2 -49% 84 90 +7% 88 +5%
BLUE 9.6 7.5 -22% 7.8 -18% 68 45 -33% 45 -34% 16 3.3 -79% 3.4 -79% 212 191 -10% 184 -13%

avg. -17% -14% -32% -34% -68% -69% -22% -24%

Table 4:Effect of predictions on the absolute difference between reservations and actual start times. Rate is
the percentage of jobs that wait and get a reservation. Both rate and statistics of the distribution of differences
are reduced with predictions, indicating improved performance and superior predictability, respectively.

that need a reservation is consistently reduced by 8–22% when predictions are used, indicating

more jobs enjoy backfilling and reduced wait times. The rest of the table characterizes the asso-

ciated distribution of absolute differences between reservations and start times. Both EASY+ and

EASY++ obtain big reduction in the average differences: e.g. on SDSC, from almost 3 hours (171

minutes) to about an hour and a half (91 minutes). Reductionsin median differences are even more

pronounced: they are at least halved across all traces, witha 79% top improvement obtained by

EASY++ on BLUE. The variance of differences is typically also reduced, sometimes significantly,

with an exception of a 5–7% increase for KTH. The bottom line is therefore that using runtime

predictions consistently and significantly improves predictability of jobs’ starting time.

Improving the quality of reservations on average is desirable e.g. for grid co-allocation where

it is important for a job to start exactly on time. However, itis conceivable some systems would

care more about jobs being delayed beyond their reservation, than started earlier. Tab. 5 shows the

rate of delayed jobs and the distribution of actual delays. Even with plain EASY 0.1–1.5% of the

jobs are delayed, because (as reported earlier) jobs sometimes outlive their user estimates. Un-

fortunately, when predictions come into play, the delays become much more frequent and involve

1.3–3.8% of the jobs. On the other hand, both the average delay and its standard deviation are dra-

matically reduced, e.g. SDSC’s average drops from about 8.5hours (513 minutes) to less than 1.5

(86 minutes) and its standard deviation drops at a similar rate. Medians values, however, increase

by up to an order of magnitude (KTH/SDSC), though in absoluteterms they are all less than ten

minutes. This indicates that EASY’s delay-distribution ishighly skewed and that our techniques

curb the tail, at the expense of making short delays more frequent.
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trace rate[% of jobs] avg. delay[minutes] median delay[minutes] stddev delay[minutes]
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++
EASY EASY

+
EASY

++

SDSC 1.5 3.8 +149% 3.8 +150% 513 92 -82% 86 -83% 0.9 8.6 +896% 8.3 +859% 1442 223 -85% 206 -86%
CTC 0.7 1.3 +81% 1.3 +83% 72 37 -49% 34 -53% 1.9 3.0 +62% 2.6 +43% 119 102 -14% 94 -21%
KTH 0.1 1.8 +1518% 1.8 +1493% 58 52 -11% 44 -23% 0.7 11 +1541% 9.9 +1428% 108 107 -1% 87 -20%
BLUE 0.9 1.8 +97% 1.8 +102% 48 35 -28% 31 -35% 0.8 2.2 +174% 2.1 +165% 318 154 -52% 136 -57%

avg. +461% +457% -42% -48% +668% +624% -38% -46%

Table 5: Effect of predictions on the delays beyond a job’s reservation. With predictions, the rate and
median delay are increased, but the average and standard deviation of delays are reduced.

Nevertheless, there are two solutions for systems that do not tolerate delays. One is to employ

double booking: leave the internals of the algorithms basedon predictions, while reporting to

interested outside parties about reservations which wouldhave been made based on user estimates

(never violated if jobs are killed on time). This solution enjoys EASY++’s performance but suffers

from EASY’s (in)accuracy. The other solution is to backfill jobs in prediction order, but only if

their user-estimated termination falls before the reservation. This ensures backfilled jobs do not

interfere with reservations, at the price of reducing the backfilling rate. Indeed, this algorithm

enjoys all the benefits of the “+” variants in terms of internal accuracy, while being similar or

better than EASY with respect to unwarranted delays. As for performance, it is 1–10% better than

that of EASYSJBF (Tab. 3).

5 Relationship With Other Algorithms

Our measurements so far have compared various scheduling schemes, culminating with EASY++,

against vanilla EASY. However, other variants of backfilling schedulers have been proposed since

the original EASY scheduler was introduced. In this respect, it is desirable to explore two aspects:

comparing EASY++ against some other generic proposals, along with investigating the effect of

directly applying our optimization techniques to the otherschedulers themselves.

We have chosen to compare EASY++ against the two generic scheduling alternatives that were

previously mentioned in this paper: EASY with doubled user estimates (denotedX2), and SJF

based on user estimates (as a representative of several different schemes that prioritize short jobs).

The results are shown in Tab. 6. EASY++ outperformsX2 by a wide margin for all traces and

both metrics. It is also rather close to SJF scheduling in allcases, and outperforms it in one case
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trace wait [minutes] b. slowdown accuracy[%]
EASY X2 SJF EASY

++
EASY X2 SJF EASY

++
EASY X2 SJF EASY

++

SDSC 363 333 -8% 535 +47% 327 -10% 99 89 -10% 69 -30% 70 -29% 32 16 -49% 32 -0% 60 +87%
CTC 21 20 -8% 13 -38% 14 -33% 4.6 4.1 -10% 2.8 -40% 2.9 -37% 39 20 -49% 39 +0% 62 +61%
KTH 114 102 -11% 79 -31% 95 -17% 90 80 -11% 45 -50% 57 -36% 47 24 -50% 47 -0% 61 +28%
BLUE 130 115 -11% 81 -38% 87 -33% 35 30 -15% 25 -29% 19 -47% 31 16 -47% 31 +0% 62 +102%

avg. -10% -15% -23% -12% -37% -37% -49% +0% +70%

Table 6:Average wait and bounded slowdown achieved by EASY++ compared with two other schedulers
proposed in the literature: doubling user estimates and using SJF scheduling.

(SDSC’s wait) where SJF fails for an unexplained reason. Theadvantage over SJF is, of course,

the fact that EASY++ is fair, being based on FCFS scheduling with no danger of starvation. Also,

the gap can potentially be reduced if better predictions aregenerated.

As mentioned earlier, EASY++ attempts to be similar to prevalent schedulers’ default setting

(usually EASY [7]) in order to increase its chances to replace them as the default configuration.

But the techniques presented in this paper can be used to enhanceanybackfilling algorithm. Tab. 7

compares vanillaX2 and SJF to their corresponding “optimized” versions: In addition to doubling

of estimates (recall that these serve as fallback predictions when there’s not enough history),X2+

replaces estimates with (doubled) predictions, and employs prediction correction.X2++ adds

SJBF toX2+. Finally, SJF+ is similar to EASY++, but allocates the reservation to the shortest

(predicted) job, rather than to the one that has waited the most.7 The theoretical optima ofX2+,

X2++, and SJF+, areX2perf , X2++
perf , and SJFperf , respectively (use perfect estimates instead of

system-generated predictions).

Tab. 7 shows that switching fromX2 to X2+ can better performance (up to -18% in CTC’s

wait and KTH’s slowdown) or worsen it (up to +8% in BLUE’s slowdown), though improvements

are more frequent and on average,X2+ is 4-6% better thanX2. When further optimizing by

adding SJBF (X2++), performance is consistently better, with a common improvement of 25-

33%. The result of upgrading SJF to SJF+ is once again inconsistent among traces/metrics, but

here too improvements are more frequent (4-8% on average). In all cases, using prefect predictions

(X2perf , X2++
perf , and SJFperf ) leads to consistent improvements in performance, indicating prior

inconsistency steamed from our simplistic predictor and motivating the search for a better one.

7SJF+ and SJF++ are equivalent because both employ SJBF by definition.
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trace doubling shortest job
wait [minutes] b. slowdown wait [minutes] b. slowdown

X2 X2
+

X2perf X2
++

X2
++

perf
X2 X2

+
X2perf X2

++
X2

++

perf
SJF SJF

+
SJFperf SJF SJF

+
SJFperf

SDSC 333357 +7% 293-12%333 -0% 270-19% 89 94 +6% 77 -13% 67 -25% 58 -34% 535 308 -42% 270-50% 69 34 -51% 19 -73%

CTC 20 16 -18% 18 -8% 15 -25% 16 -16% 4.1 3.6-13% 3.2-21%3.0-28% 2.5-38% 13 12 -11% 12 -11% 2.8 2.4 -12%1.8-35%

KTH 102 98 -4% 95 -6% 93 -8% 84 -18% 80 66 -18% 70 -13% 53 -33% 50 -38% 79 87 +10% 67 -16% 45 44 -2% 24 -46%

BLUE 115105 -9% 107 -8% 86 -26% 80 -31% 30 33 +8% 28 -7% 21 -32% 12 -59% 81 90 +11% 50 -39% 25 37 +49%5.4-78%

avg. -6% -8% -15% -21% -4% -14% -30% -42% -8% -29% -4% -58%

Table 7:Average performance and (shaded) improvement when optimizing vanillaX2 and SJF.

6 Does Better Accuracy Imply Better Performance/Predictability?

This study is based on the notion that superior accuracy should result in improved performance

(better packing) and predictability (better individual runtime predictions). However, we have also

witnessed several occasions in which these metrics conflict. Thefirst and most obvious is shown in

Fig. 3 where deliberately making estimates less accurate (doubling) consistently improves perfor-

mance. Asecondexample is related to the predictor switch done in Sec. 4. Throughout this paper

we’ve used anall prediction window, where the last two terminated jobs by thesame user were

used for prediction, regardless of their attributes. In contrast, in Sec. 4 we’ve used animmediate

window, in which we generate a prediction only if these two jobs have user runtime estimates that

are equal to that of the newly submitted job (i.e. they are “similar”). The fact of the matter is that

all (which is more accurate) is better for performance, whereasimmediate appears as better for

predictability (Tab. 8). Further, athird example is that the performance ofimmediate-EASY+

andX2 is very similar (Tab. 9). These schedulers are identical in every respect, except EASY+

uses runtime predictions whereasX2 uses something that is even less accurate than user estimates

(user estimates that are doubled). The fact the two yield similar performance raises the question of

whether it is worthwhile to even bother with runtime prediction.

This section addresses these three examples and explains what really happens to make accu-

racy and performance seem contradictory. We begin by explaining why doubling estimates helps

performance [36]. Assume all runtime estimates are perfectly accurate (the same explanation holds

for user estimates). Fig. 8 illustrates the dynamics ofX2 backfilling. Based on the information

available to the scheduler atT0 (time 0), it appears the earliest time forJ3 (job 3) to start isT12,
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trace performance accuracy prediction pyabs pydelay

wait [min] b. slowdown rate [job %] rate [job %] minutes rate [job %] minutes
imm all imm all imm all imm all imm all imm all imm all imm all

SDSC 363327-10% 81 70 -13% 56 60 +8% 59 89 +52% 15 12 -21% 91 98 +8% 3.8 5.0 +30% 86 150 +74%
CTC 17 14 -16% 3.6 2.9-20% 59 62 +6% 63 90 +44% 5.7 5.1-11% 27 27 -1% 1.3 1.7 +26% 34 53 +56%
KTH 98 95 -3% 67 57 -15% 58 61 +5% 39 84 +115% 14 11 -22% 35 63 +78% 1.8 3.6+106% 44 149+236%
BLUE 100 87 -13% 19 19 -2% 59 62 +5% 70 90 +29% 7.8 5.2-33% 45 65 +46% 1.8 2.0 +10% 31 136+333%

avg. -10% -12% +6% +60% -22% +33% +43% +175%

Table 8: Comparing theimmediate andall versions of EASY++: pyabs relates to metrics from Tab. 4
(absolute difference between start time and reservation);pydelay relates to metrics from Tab. 5 (delay beyond
a reservation). Theall version is∽10% better in terms of average performance and 6% more accurate.
Nevertheless, despite its improved accuracy, it seems to loose in predictability: itspyabs rate is 11-33%
lower (good), but the actual difference might be 78% higher (KTH); worse, both rate and duration of delayed
jobs are significantly increased (KTH’s rate is doubled, BLUE’s delay is more than quadrupled).
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Figure 8: The dynamics ofX2 backfilling. Job numbers indicate arrival order. The left portion of jobs
(green/dark) indicates their real runtimes. Due to the doubling, the scheduler views jobs as twice as long
(right portion; yellow/bright). The bottom arrows show theprogress of time, whereas top black arrows show
the earliest time at which job 3 would have been started, had real runtimes been known (at that particular
point in time). The thief’s width shows the amount of “stolen” time, at the expense of job 3.

even though thereal earliest start time is actuallyT6. Thus, the scheduler makes a reservation on

J3’s behalf forT12 and can only backfill jobs that honor this reservation. AtT4, J2 terminates. As

J1 is still running, nothing has changed with respect toJ3’s reservation, and so the scheduler scans

the wait queue in search of appropriate candidates for backfilling. J4 fits the gap betweenT4 and

the reservation (T12) and so it is backfilled, effectively pushing back the real earliest time at which

J3 could have started fromT6 to T8.

This “heel and toe” scenario, of repeatedly pushing away theearliest starting point of the first

queued job, may continue untilT12 is reached. During this time, the window between the current

time and the reservation time is continuously shortened, such that waiting jobs that fit this open

gap get shorter and shorter. It is this limited form of “SJFness” which is the source of theX2

performance improvement: Note that waiting jobs that are assigned a reservation are usually both
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trace wait [minutes] b. slowdown
imm X2 imm X2

SDSC 343333 -3% 92 89 -3%
CTC 18 20 +7% 3.7 4.1 +10%
KTH 108102 -6% 79 80 +2%
BLUE 121115 -4% 31 30 -3%

avg. -2% +2%

Table 9: X2 and immediate
EASY + yield similar perfor-
mance despite the fact they are
identical except the latter im-
proves predictions whereas the
former worsens them.

trace stalled rate[%] stall time[min] avg. thieves #
EASY X2 EASY X2 EASY X2

SDSC 7.2 11 +49% 91 137 +50% 1.9 2.1 +9%
CTC 9.1 11 +9% 35 50 +42% 2.5 2.8 +10%
KTH 7.0 11 +61% 51 107+111% 1.6 2.3 +45%
BLUE 9.2 12 +29% 54 118+119% 2.3 3.1 +33%

avg. +39% +80% +24%

Table 10: “Heel and toe” effect is amplified due toX2. Rate is the
percent of jobs that had their earliest start time pushed back due to the
effect, out of waiting jobs that got a reservation. Stall-time is the av-
erage period between a job’s earliest start-time (computedaccording to
perfect estimates) and its actual start-time. “Thieves” indicate the per-
job average number of times the earliest start-time is pushed back (3
times forJ3 in Fig. 8).

long and wide (under EASY, we measured the average runtime-estimate and size to be 7 hours and

17% of the machine’s processors, respectively). As shorterjobs are prioritized at the expense of

these jobs, whatX2 is really doing istrading off FCFS-fairness for performance. Indeed, when

doubling real user estimates the “heel and toe” effect is greatly amplified (Tab. 10).

Based on this analysis, comparing betweenX2 and immediate EASY+ (Tab. 9) is actually

comparing between different types of unrelated andorthogonaloptimizations: favoring shorter

jobs vs. improving predictions. Thus, we contend that doubling should be viewed as a property of

a scheduler,not the prediction algorithm. Indeed, both Fig. 3 and Tab. 7 indicate that doubling of

improved predictions (whether perfect or based on history)yields better performance than when

doubling the lower quality user runtime estimates. So predictors should strive to make the best

predictions they can and leave the choice of whether to double or not in the hands of the scheduler.

The remaining open issue is thatall, which is more accurate, seems less predictable thanim-

mediate in Tab. 8. Nevertheless,all is actually more predictable. First, considerpyabs. While the

absolute difference underimmediate is reduced, the rate of jobs that suffer such a difference is

significantly higher. To see which of the two metrics have more impact (rate or difference), we

computed the average difference with respect toall the jobs in the log (product of Tab. 8’s “rate”

and “minutes” columns, divided by 100). This reveals thatall is actually more predictable than

immediate in 3 out of the 4 logs.

As for pydelay, this metric is actually very problematic and should not be used alone. For ex-
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ample,X2 obviously reduces the accuracy of estimates, but has much lower pydelay than using

the estimates as is, because it computes reservations basedon unrealistically too-long predictions;

tripling the estimates would make the effect even more pronounced. Likewise,immediate pro-

duces less predictions thanall and therefore falls back on user estimates more often (Tab. 8’s

prediction rate). This explains whyimmediate is less accurate. Additionally, as estimates are

bigger than predictions (by definition),immediate’s reservations are further away in the future. In

other words,pydelay is an unreliable predictability metric as it only accounts for “one side to the

coin”: jobs that runlater than their reservation.

7 Tuning Parameters

The EASY++ algorithm has several selectable parameters that may affect performance. We have

identified seven parameters (formally defined later on) thatare mainly concerned with the definition

of thehistory window: which previous jobs to use, and how to generate the prediction. Some of

these parameters have only two optional values, while others have a wide spectrum of possibilities.

To evaluate the effect of different settings, we simulatedall 8,640 possible parameter combina-

tions8, henceforth calledconfigurations, using our four different workloads. This led to a total of

nearly 35,000 simulations (8,640 times the 4 traces),9 where each simulation yielded two perfor-

mance metrics (average wait and slowdown). Thus, each configuration (that is, parameter combina-

tion) is evaluated by eight trace/metrictestcases({SDSC,CTC,KTH,BLUE}×{wait,slowdown}).

The results of the simulations indicate that the “performance surface” is extremely noisy. There

are many different and seemingly unrelated configurations that achieve high performance, but there

is no single configuration that is best for all eight testcases. In order to provide effective guidance

in choosing the parameters we therefore performed a joint analysis of all the data. Our goal is to

find the best configuration, where “best” means robust good performance under all eight testcases.

We anticipate that such a configuration will also perform well under other conditions, e.g. with

8Product of the number of different values each parameter mayhave. Following the left-to-right parameters’ order
in Fig. 9, this is:3 × 2 × 2 × 2 × 4 × 3 × 30 = 8, 640; see detailed explanation below.

9Some combinations were actually equivalent and were therefore only done once; an example is making predictions
using the average, median, maximum, or minimum of history jobs when there is only one history job.
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rank average configuration
performance window window fullness metric fallback propagation prediction
degradation size type correction

1 9.41% 11 all partial avg est yes estimate
2 10.60% 3 ext full avg rel yes estimate
3 10.84% 16 all full med rel yes estimate
4 11.16% 21 all partial med rel yes estimate
5 11.25% 10 all full med est yes estimate
6 11.31% 4 ext partial min rel yes estimate

7/8 11.47% 9 all partial med rel/est no estimate
9 11.56% 2 ext full min est yes estimate

10/11 11.61% 22 all partial med rel/est no estimate
... ... ... ... ... ... ... ... ...

8640 239.88% 26 all full min est no gradual

Table 11:Top and bottom ranked configurations.

new workloads, as will be explained below.

The analysis is done as follows. We start by ranking all 8,640configurations (parameter com-

binations) in two steps. First, we evaluate the “degradation in performance” of each configuration

c under each trace/metric testcaset. This is done relative to the best performing configurationb for

that testcase, as follows: letPb andPc be the performance ofb andc undert, respectively, thenc’s

degradation undert is defined to be100Pc

Pb

− 100. Thus, each configuration is now characterized

by eight numbers, reflecting its relative performance degradation under the eight testcases. In the

second step we average these eight values and the configurations are ranked accordingly: the best

configuration, with thelowestaverage performance degradation, has rank 1; the worst configura-

tion has rank 8,640. Even with this ranking, the top configurations are rather diverse (Tab. 11;

parameters will be discussed shortly).

It is important to note that our methodology is finding acompromisethat reflects all eight

testcases. For example, the top ranking configuration is nottop-ranked for any of the testcases

individually. Instead, it suffers a degradations ranging from 4.1% to 21.8% relative to the best

configurations for each testcase. But its average degradation is only 9.4%, which is lower than the

average of any other configuration.

Recall we are searching forrobustconfigurations. This robustness should manifest itself by

being immune to trivial changes and small modification. The top ranking configuration does not
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Figure 9:Distributions of ranked configurations, as a function of each parameter. Rank values (X-axis) are
converted to percents by dividing them with 8,640. Configurations are aggregated into 5%-sized bins. For
example, with prediction correction (left subfigure), about 90% of the 5%-top-ranking configurations are
associated withestimate and the remaining 10% are associated withexponential.

qualify as such: it uses 11 jobs for its prediction window, but when this value is replaced with 12,

the associated configuration is ranked 1,295 and suffersdoublethe average performance degra-

dation. It would be ludicrous to assume 11 is a magic number and to recommend using it based

on this analysis. We therefore search for acontiguous subspacewithin the configuration space

(namely, a set “near by” configurations), such thatall its population yields good results.

The distributions of the different parameter values are shown in Fig. 9, and we now discuss

each one in turn, starting with those that are easiest to characterize (left to right). The first pa-

rameter is how to performprediction correction (when the predicted termination has arrived but

the job continues to run). One option is to simply revert to the original userestimate. Other

options are to grow the predictiongradually (by predefined increments as in Section 3), or in an

exponential manner (by adding e.g. 20% each time). The results (Fig. 9, left) clearly indicate that

it is best to jump directly to the full userestimate, and not to first try lower predictions, as this

option dominates 90% of top-ranked configuration. This is probably so because using the full user

estimate opens the largest window for backfilling. Using agradual increase is especially bad, and

dominates the bottom half of the ranked configurations.

When we cannot generate a prediction due to lack of historical information, we use the user

estimate as aprediction fallback . Theestimate can be used as is, or it can berelatively scaled

according to the accuracy the user had displayed previously[30]. The results (Fig. 9, “fallback”)

show thatrelative provides a slight advantage, as it appears more often in highranking configura-
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tions.

The next two parameters (“propagation” and “fullness”) turned out not to have such decisive

results, at least not when considered in isolation.Propagation refers to the action taken when new

data becomes available. For example, if we make a predictionfor a newly submitted job, and later

a previous job terminates, should we update the prediction based on this new information? The

second is windowfullness. The window is the set of history jobs that is used to generatepredic-

tions. The two options are to allow apartial window, meaning that a prediction is made based on

whatever data is available, or to require afull window and use the user estimate as a fallback if not

enough jobs are available. For both these parameters, the possible values are approximately evenly

spread across the ranked configuration. The slight advantage of propagation seems not enough to

justify its computational complexity. On the other hand,partial is significantly better when larger

prediction windows are employed (not shown).

The last three parameters have intricate interactions thatwill eventually lead to the configura-

tion subspace we seek. The first is theprediction metric . Given a set of history jobs, how should

a prediction be generated? Four simple options are to use theaverage, median, minimum, or

maximum of the runtimes of these jobs. Evidently,minimum tends to lead to a low-ranking con-

figuration, and themaximum to a middle rank. Theaverage and themedian share 80% of the

top-ranked configurations, leaving the question of which one should be used.

A harder question occurs with thewindow type. The three types areall, meaning that all

recent jobs are eligible,immediate, meaning that recent jobs are used only if they are similar

to the new job (same estimate), orextended, meaning similar jobs are used even if they are not

the most recent (using the entire user history). The problemis that theall distribution has a U

shape: it accounts for more than half the top-ranked configurations, but also for two-thirds of the

lower-ranked ones.

Finally, a third difficult question is how to set thewindow size(the number of history jobs to

consider). We simulated all sizes in the range 1–30; the graph (Fig. 9, right) shows them in bins of

5. Smaller windows are more common in high-ranking configurations, but there is no range-size

25



 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  5  10  15  20  25  30

pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n 

[%
]

window size

avg.
± σ

Figure 10:Average performance degradation (along with its standard deviation) are more or less linearly
proportional to the number of history jobs being used, indicating smaller windows are preferable.

that can be said todominatehigh-ranking configurations.

To solve these problems we need to employ additional considerations, and to carefully study

the interactions among the problematic parameters. We start with the window type parameter.

There are actually big advantages to using theall window type. First, its evident top ranking peak.

Second, it is easier and more efficient to implement, becausewe just need to keep a record of the

runtimes of the last terminated (and most recently submitted) jobs by the user, and do not need to

check for job similarity. The problem is that many configurations that employ anall window type

are low ranking. The question is therefore whether we can avoid them (and how). Luckily, this can

be done by a judicious choice of the other parameter values.

Specifically, there are 1298 configurations in the bottom-ranked 30% that employ anall win-

dow type. Of these, only 194 use theestimate directly as a prediction correction. As using

estimate was shown above to be obviously beneficial, this helps eliminate 85% of the problem-

atic configurations. Of the remaining configurations, 186 use theminimum prediction metricand

employ a relatively large prediction window (≥ 7, with average of 18.8). It turns out the huge tail

of minimum (Fig. 9) is mostly associated with large window sizes, and that increasing the window

size consistently worsen the average degradation acrossall configurations. In fact, Fig. 10 shows

the connection between size and degradation is almost linear (both average and variance), with the

exception that 2 is slightly better than 1.

The bottom line is that using anall window-type is actually safe in combination withestimate
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Figure 11:Left: chosen subspace (type=all, correction=estimate) with decreasing window size. Others:
parameters distribution within the smallest shown subspace (size≤ 3).

parameter description suggestion
window size how many history jobs to consider1-2
job selectionwhich jobs to include in the windowall
metric how to generate predictions average
correction how to increase too-short predictionuser estimate

perf. degradationsize=1 size=2 full space
min 11.7% 12.0% 9.4%
max 15.3% 14.7% 239.9%
average 14.2% 13.4% 30.4%
std. deviation 1.2% 0.7% 10.1%

Table 12:Suggested settings for EASY++ (left), and performance degradation statistics of size=1 /size=2
configurations within this chosen subspace, compared to thestatistics of all 8,640 configurations (right).

prediction correction and a small window size (< 7), eliminating more than 99% ofall’s tail

configurations and clearly making it the best choice. Indeed, this subspace seems to meet our

robustness demands, as is shown in Fig. 11 (left), because all its configurations are high ranking.

Accordingly, we choose to limit the window size of our chosensubspace to be≤ 3. The rest

of the sub-figures explore the remaining parameters within this subspace. Clearly, average is the

preferable metric. Additionally, 1-2 sized windows are preferable over 3. However, it is hard to

decide between the two because size=2 dominates the top (50%) but the worst-case of size=1 is

better than that of size=2, and so we seem to have a tie. As there are also no clear winners within

the other parameters, we conclude by summarizing our recommendations in Tab. 12, which match

the prediction algorithms used in this paper.

Note that our conclusions are in disagreement with previouswork: Gibbons used all the history

available [13], and Smith et al. experimented with a limitedhistory just to reduce the size of the

search space, implying a preference for the full history [30, page 129]. However, they did not

show results. We too intuitively felt that when using historical information, it would be necessary

to focus onsimilar jobs, i.e. those with the same partition size, executable, estimate, etc. This
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has motivated the definition of theextended window type. However, the results clearly show that

recencyis more important than similarity (Fig. 10) — it is better to use the last job by the same user

than to search for the most similar job. This implies that theoverheads for storing and searching

through data about different classes of history jobs (as is done in e.g. [30, 32, 19, 20, 24]) can

be avoided altogether. Arlitt et al. reached a similar conclusion in the context of the World Wide

Web, contending “only the topmost stack element is seeing significant reuse” when predicting a

destination of a work session based on the user’s history [1].

We note in passing that in addition to preferring to use all available history, Gibbons also used a

different prediction metric: the 95th percentile of history jobs [13], which is close to the maximum

metric, and was shown above to be inferior to the average.

8 Conclusions

The most popular scheduling policy for parallel systems is FCFS with backfilling, as introduced by

the EASY scheduler [11, 7]. With backfilling, users must supply an estimate of how long their jobs

will run, to enable the scheduler to make reservations and ensure that they are respected. But user

estimates are highly inaccurate and significantly reduce system performance [35]. The alternative

is system-generated predictions based on users’ history [10, 13, 30, 19, 26, 20], which are consid-

erably more accurate. Nevertheless, predictions were never incorporated into production systems.

This paper is about identifying the problems causing this situation, and providing applicable and

easy to use solutions to all of them. Specifically, we identify three major difficulties and thus the

contribution of this paper is threefold.

The first difficulty is of technical nature. Under backfilling, user estimates are part of the user

contract: jobs that exceed their estimates are killed by thesystem, so as not to violate subsequent

commitments. This makes system-generated predictions unsuitable, as some predictions inevitably

turn out too short, and users will not tolerate their jobs being killed prematurely just because

of erroneous system speculations. Researchers that noted this problem failed to solve it within

the native backfilling framework [13, 26, 2, 22], but our solution is rather simple: (1) use user

estimates exclusively as kill-times, (2) base all other scheduling decisions on system-generated
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predictions, and (3) dynamically increase predictions outlived by their jobs, and push back affected

reservations, in order to provide the scheduler with a truthful view of the state of the machine.

Applying this to EASY usually results in a∽25% reduction in average wait time and slowdown.

We call this improved algorithm EASY+.

The second major difficulty is related to a common misconception suggesting inaccuracy actu-

ally improves performance, implying that good estimates are actually “unimportant”. This relies

on a number of studies showing significant improvements whendeliberately making user estimates

even less accurate (by doubling or randomizing them [39, 28,26]). In this respect, our contribution

has two parts: (1) explaining this surprising phenomenon, and (2) exploiting it. Doubling helps

because it induces “heel and toe” backfilling dynamics that approximates an SJF-like schedule, by

repeatedly preventing the first queued job from being started. Thus doubling trades off fairness for

performance and should be viewed as a property of the scheduler, not the predictor (indeed, we’ve

shown that the more accurate predictions are, the better theresults that doubling obtains). We

exploit this new understanding to avoid the aforementionedtradeoff by explicitly using a shortest

job backfilledfirst (SJBF) backfilling order. This leads directly to a performance improvement that

was previously incorrectly attributed to stunts like doubling or randomizing user estimates. By

still preserving FCFS as the basis, we manage to enjoy both worlds: a fair scheduler that neverthe-

less backfills effectively. Applying this to EASY+ can nearly double the performance (up to 47%

reduction in average slowdown). We call this enhanced algorithm EASY++.

The third and final difficulty is related to the usability of previously suggested prediction algo-

rithms. These all suffer from at least one (and sometimes all) of the following drawbacks: (1) they

require significant memory and complex data structures to save the history of users, (2) they em-

ploy a complicated prediction algorithm (to the point of being off-line), and (3) they pay the price

in terms of computational overheads for maintaining the history and searching it [13, 30, 19, 20].

Here too our contribution is twofold: (1) showing that a verysimple predictor can do an excellent

job, and (2) explaining why. Indeed, the improvements of EASY+ / EASY++ reported above were

obtained by employing a very simple predictor that is both easy to implement and suffers almost
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no overheads: the average runtime of the two most recently submitted (and already terminated)

jobs by the same user. We have argued that our predictor’s success stems from the fact it focuses

on recentjobs, in contrast to previous predictors that focused onsimilar ones (in terms of various

job attributes). This claim is supported by our finding that performance degradation is more or less

linearly proportional to the amount of past jobs upon which the prediction is based, suggesting a

prediction window of only one or two jobs is optimal (Fig. 10).

Finally, note that while we focus on improving EASY, we have also shown our techniques can

be applied equally well to any other backfilling scheduler. (Indeed, our work has already inspired

researchers working on theeNANOS grid to incorporate runtime predictions using techniques

described in this paper [21].) The reason we choose to focus on EASY is its popularity in pro-

duction systems, which may be attributed to the combinationof conservative FCFS semantics with

improved utilization and performance. Since EASY++ essentially preserves these qualities, but

consistently outperforms its predecessor in terms of accuracy, predictability, and performance, we

believe it has an honest chance to replace EASY as the defaultconfiguration of production systems.
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