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Abstract

The most commonly used scheduling algorithm for parallpestomputers is FCFS with
backfilling, as originally introduced in the EASY schedulackfilling means that short jobs
are allowed to run ahead of their time provided they do noaggreviously queued jobs (or at
least the first queued job). To make such determinationstpesasers are required to provide
estimates of how long jobs will run, and jobs that violatesthestimates are killed. Empirical
studies have repeatedly shown that user estimates areurgtec and that system-generated
predictions based on history may be significantly betterwkhler, predictions have not been
incorporated into production schedulers, partially dueaanisconception (that we resolve)
claiming inaccuracy actually improves performance, buimyabecause underprediction is
technically unacceptable: users will not tolerate jobsriggkilled just because system predic-
tions were too short. We solve this problem by divorcingtkitie from the runtime prediction,
and correcting predictions adaptively as needed if theymoyed wrong. The end result is a
surprisingly simple scheduler, which requires minimalidgens from current practices (e.qg.
using FCFS as the basis), and behaves exactly like EASY as faers are concerned; nev-
ertheless, it achieves significant improvements in perdoica, predictability, and accuracy.
Notably, this is based on a very simple runtime predictot jhst averages the runtimes of the
last two jobs by the same user; counterintuitively, our lssndicate that using recent data is
more important than mining the history for similar jobs. &k techniques suggested in this

paper can be used to enhance any backfilling algorithm, aedcat limited to EASY.
CATEGORIES [D.4.7.f] Parallel systemdD.4.1.e]Scheduling]D.4.8.a] MeasurementgD.4.8.b] Modeling and
prediction,[D.4.7.a]Batch processing systems

KEYWORDS Parallel job scheduling, backfilling, runtime estimatesstesm generated predictions, history based
predictions, dynamic prediction correction, performamesrics, EASY, EASY++, SIBF
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Figure 1: EASY backfilling reduces fragmenta- Figure 2: The accuracy histogram is rather flat
tion. It would have been impossible to backfill job when ignoring jobs that reached their estimate and
4 had its length been more than 2, as the reservatiowere Killed by the system (100% peak) or that failed
for job 3 would have been violated. on startup (0% hump).

1 Introduction

Backfilling. The default algorithms used by current batch job schediensarallel supercom-
puters are all rather similar to each other [7]. In essert®y select jobs for execution in first-
come-first-serve (FCFS) order, and run each job to complelibe problem is that this simplistic
approach causes significant fragmentation, as jobs do it pexfectly and processors are left
idle. Most schedulers therefore usackfilling if the next queued job cannot run because suf-
ficient processors are not available, the scheduler nealedh continues to scan the queue, and
selects smaller jobs that may utilize the available resesirc

A potential problem with this is that the first queued job maydbtarved as subsequent jobs
continually jump over it. The solution is makingeservatiorfor this job, and allowing subsequent
jobs to run only if they respect it (Fig. 1). This approach waginally introduced by EASY, the
first backfilling scheduler [25]. Many backfilling variantave been suggested since, e.g. using
more reservations, employing a non-FCFS wait queue ortier[¥l]. However, the default of
most parallel schedulers (e.g. Maui/Moab [15] and IBM’sdédaveler [18]) has remained plain
EASY [7], and it has been estimated that 90-95% of the iretialhs do not change this default
configuration [14]. Indeed, while simple, backfilling dramsally improves utilization [17] and

yields comparable performance to that of more sophisticalgorithms [3, 38].

User Runtime Estimates. Backfilling requires the runtime of jobs to be known: both witem-

puting the reservation (requires knowing when processboesiwently running jobs will become



available) and when determining if waiting jobs are eligifdr backfilling (must terminate before

the reservation). Therefore, EASY required users to peaiduntime estimate for all submitted

jobs [25], and the practice continues to this day. Jobs tkeged their estimates are killed, so as
not to violate subsequent commitments. The assumptioratsufers would be motivated to pro-

vide accurate estimates, because (1) jobs would have a be#rce to backfill if their estimates

are tight, but (2) would be killed if they are too short.

Nevertheless, empirical studies of traces from sites thatadly use EASY show that user
estimates are generally inaccurate [26]. This is exemglifieFig. 2 showing a typical accuracy
(= 100 - %) histogram: when only considering jobs that have terminateztessfully we
get a rather uniform-like distribution, meaning any levékocuracy is almost equally likely to
happen. A possible reason is that users find the motivatiorngoestimate — so that jobs will not
be killed — much stronger than the motivation to provide aataiestimates and help the scheduler
to perform better packing. Moreover, a recent study inés#tat users are actually quite confident
of their estimates, and most probably would not be able teigeomuch better information [23].

Estimates also embody a characteristic that is partigutzalmful for backfilling: they are
inherently modal, as users tend to choose “round” estinfatgsone hour) resulting in 90% of the
jobs using the same 20 values [35]. This modality limits ttieesluler’s ability to exploit existing
holes in the schedule because all jobs look the same. Boticunacy and modality deteriorate

performance (Fig. 3; compare “orig” to “perfect”) and matig searching for an alternative.

The Alternative. The search for better estimates has focused on using ketdata. As users
of parallel machines tend to repeatedly do the same work [tl®tonceivable historical data can
be used to predict the future (Fig. 4). Suggested predisttiemes include using the top of a 95%
confidence interval of job runtimes [13], a statistical mido@sed on the (usually) log-uniform
distribution of runtimes [6], using the mean plus 1.5 staddieviations [26], and several other
techniques [30, 19, 20]. Despite all this work, backfill sdhlers in actual use still employ user
estimates rather than history-based system-generatditooaes, due to three difficulties: (1) a

technicality, (2) usability issues, and (3) misconcepido be described in detail nexthis paper
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. . ) ) job of user
down of jobs improve when user estimates (“orig”)

are replaced by real runtimes (“perfect”). Doubling Figure 4:Runtime and estimate of jobs by four ar-
helps both original estimates and perfect ones. bitrary SDSC users show remarkable repetitiveness.

is about refuting or dealing with these difficulties

Technicality. The core problem is that it's simply impossible to naivelplexze estimates with
system predictions, as these might turn out too short lgadipremature killing of jobs according
to the backfilling rules. Suggested solutions have incluglegly ignoring it, using preemption,
employing test runs, or replacing backfilling by shortest fost (SJF) [13, 39, 28, 3, 2, 22].
None of these retain the appeal of plain EASY. Mu’alem andefsn checked the extent of
the underprediction phenomenon, showed it to be signifit20f6 of the jobs), and concluded
that “it seems using system-generated predictions forfidaady is not a feasible approach” [26].
However, as we will show, solving this problem is actuallytgsimple: user estimates must serve

as kill times (part of the user contract), while system prdns can be used for everything else.

Usability. Previous prediction techniques have assumed that an ieng@dmponent is to iden-
tify the most similar jobs in the history, and base the prioiis on them. To this end they em-
ployed genetic algorithms [30, 32], instance based legrfiifi], and rough set theory [20]. Unfor-
tunately, these are all much more complex than the EASY sdbedself, and more importantly,
they require a training period which can be significant. Baneple, Smith et al. [30, 32] used

an entire trace to guide the selection of job templates,rbefgaluating their algorithm (on the

1Smith et al. didn’t specify how they utilized system preitins for backfilling [32].



very same trace, using the selected templates). While icipie it's possible to use such algo-
rithms on-line (repeatedly training on what's availablig success of this approach along with
the overheads it entails remains to be evaluated.

In contrast, we show that even extremely trivial algorithieg. using the average runtime of
two preceding jobs by the same user) result in significantavgment, both in the accuracy of
the prediction itself and in the resulting performance. \Wese such a simple predictor in order
to focus on how predictions are integrated into backfillicgeslulers, and not on the prediction
algorithm itself. However, our evaluations indicate thaistwas a fortuitous choice, and that

recency is actually more important than similarity whemgdiistorical data.

Misconceptions. Surprisingly, studies regarding the impact of inaccuraayehfound that it ac-
tually improves performance [9]. This has even led to thegesgon that estimates should be
doubled[39, 26] orrandomized28], to make them even less accurate. Doubling indeed #@ghib
remarkable improvements (Fig. 3), which seemingly neghiesotivation to incorporate mecha-
nisms for better predictions, deeming user estimates amfortant”. We solve this mystery and
show the “inaccuracy helps” myth is actually false in thregpects.

First, doubling original user estimates indeed helps, bahemore so if applied to perfect
estimates (Fig. 3; compare “origX2” to “perfectX2”). We shthat doubling of good predictions
is similar: the more accurate original predictions are rttoge the doubling is effective.

Second, we show that the reason doubling helps is becausansahorter jobs to move for-
ward within an FCFS setting, implicitly approximating arFSike schedule. (Indeed, most studies
dealing with predictions indicate that increased accunaproves performance when shorter jobs
are favored [13, 32, 39, 28, 2]). This is obtained by graguallshing away the start time of the
first queued job, in a kind of “heel and toe” dynamics that @ffely trades off FCFS-fairness
for performance. A main contribution of this paper is shaythis tradeoff can be avoided by
explicitly using ashortest job backfilled firgtSIBF) backfilling order. By still preserving FCFS
reservation-orderwe maintain EASY’s appeal and enjoy both worlds: a fair sicther that never-

theless backfills effectively.



abbre-| trace site CPUs| jobs start end | utili- | avg. runtime|
viation | version zation| [minutes]
CTC 1.1 | Cornell Theory Center 512| 77,222| Jun 96| May 97| 56% 123
KTH 1.0 | Swedish Royal Instit. of Tech. 100| 28,490| Sep 96| Aug 97| 69% 188
SDSC| 2.1 |San-Diego Supercomputer Center 128| 59,725| Apr 98| Apr 00 | 84% 148
BLUE 2.1 | San-Diego Supercomputer Centet,152| 243,314 Apr 00| Jun 03| 76% 73

Table 1: Traces used to drive simulations. All were recorded on IBMh&ehines. The first three use the
EASY scheduler. The fourth (SDSC Blue Horizon) uses the Leadler infrastructure and the Catalina
scheduler (also performs backfilling and supports resens)t Further details can be found in [27].

The third fallacy in the “inaccuracy helps” claim is the urglang implied assumption that pre-
dictions are only important for performance. In fact, thes also important for various functions.
One example is advance reservations for grid allocationcanallocation, shown to considerably
benefit from better accuracy [19, 31, 24]. Another is schieduholdablejobs that may run on
any number of nodes [6, 32, 4]. The scheduler’s goal is tommize response time, considering
whether waiting for more nodes to become available is pablerover running immediately. Thus

a reliable prediction of how long it will take for additionabdes to become available is crucial.

Roadmap. This rest of the paper is structured thus. After describimgmethodology (Sec. 2),
we explain how prediction-based backfilling is done and destrate the improvements (Sec. 3—
4). We show the generality of our techniques (Sec. 5), faeeatiove misconceptions (Sec. 6),

investigate the optimal parameter settings for our algorg (Sec. 7), and conclude (Sec. 8).

2 Methodology

The experiments are based on an event-based simulation ®¥ EB&heduling, where events are
arrivals and terminations. Upon arrival, the schedulenfiermed of the number of processors the
job needs and its estimated runtime. It can then start the gifnulated execution or place itin a
gueue. Upon a job termination, the scheduler is notified andschedule other queued jobs on the
free processors. Job runtimes are part of the simulatiautjiyoit are not given to the scheduler.
Tab. 1 lists the four traces we used to drive the simulatidsssuggested in the Parallel Work-
loads Archive [27], we are using their “cleaned” version®,[37]. Since the traces span the past

decade, were generated at different sites, on machinesdiffiéhent sizes, and reflect different



load conditions, we have reason to believe consistentteesitained in this paper are truly repre-
sentative. Traces are simulated using the exact data mwwdth possible modifications as noted
(e.g. to check the impact of replacing user estimates wikesy generated predictions).
The performance is measured using average wait-time anddeduslowdown. Lef;, and
T, denote a job’s wait- and run-time, respectivell, is the period between the job’s submit-
tal and start timé&. Slowdown is response time normalized by running tirﬁej{l. Bounded
slowdown eliminates the emphasis on very short jobs (e.th éro runtime) due to having the
runtime in the denominator; a commonly used threshold ofelf®isds was set yielding the for-
mula: max (1 , %) To reduce warmup and cooldown effects, the first 1% of teateih
jobs and those terminating after the last arrival were ndtiohed in the metrics averages [16].
The measure occuracyis the ratio of the real runtime to the prediction. If the potidn
is larger than the runtime, this reflects the fraction of poted time that was actually used. But

predictions can also be too short. Consequently, to avoittrarand over-prediction canceling

themselves out (when averaged), we define

1 if P="1T,
accuracy = { T,/P if P>T1T,
P/T, if P<T,

whereP is the prediction; the closer the accuracy is to 1 the morarate the prediction. This is
averaged across jobs, and also along the lifetime of a Sjolg)é& the system updates its prediction.
In that case a weighted average is used, where weights rigféectlative time that each prediction

was in effect. More formally, given a joB, its weighted accuracy 5 | A, - <7}N‘_T;01> where

Ty and Ty are J's submission and termination time, respectively, ahds the accuracy of the

prediction ofJ that was in effect from timé&;_; to timeT;.

2We prefer using average wait-time over response-tifiyet- 7;.), because for batch systems the difference between
them is a constartt, regardless of the scheduler being uséds the average runtime, %SZ (T +T,)= % S Tw+
% T, = % > T + C. SinceC is a given that is unaffected by the scheduler, preferrinigrtirae implies focusing
only on the scheduling activity and neutralizing the higidyiable average runtime (Tab. 1).



3 Incorporating Predictions into Backfilling Schedulers

The simplest way to incorporate system-generated pred&tnto a backfilling scheduler is to use
them in place of user-provided estimate$he problem of this approach is that aside from serv-
ing as a runtimeypproximation estimates also serve as the runtinpper-boundkill-time). But
predictions might happen to be shorter than actual runtienas users will not tolerate their jobs
being killed just because the system speculated they werteslthan the user estimate. So itis not
advisable to just replace estimates by predictions. Pusvstudies have dealt with this difficulty
either by: eliminating the need for backfilling (e.g. usingg SJF [13, 32]), employing test runs
[28, 2, 22], assuming preemption is available (so jobs the¢ed their prediction can be stopped
and reinserted into the wait queue [13, 3]), or considerimly artificial estimates generated as mul-
tiples of actual runtimes (effectively assuming underpotéah never occurs) [39, 28, 2, 33, 34].
Mu’alem and Feitelson noted this problem, and investigatikeetther underprediction does in fact
occur when using a conservative predictor (average of pusvjobs with the same user / size /
executable, pluﬁé times their standard deviation) [26]. They found th&0% of the jobs suf-
fered from underprediction and would have been killed ptenedy by a backfill scheduler. They

therefore suggested that system-generated predictiobadifilling is not a feasible approach.
3.1 Separating the Dual Roles of Estimates

The key idea of our solution is recognizing that the undetioteon problem emanates from the
dual role an estimate plays: both as a prediction and as-trkdl. We argue that these should be
separated. It is legitimate to kill a jaince its user estimate is reachdxuit not any sooner; there-

fore the main function of estimates is to serve as kill-tim&H other scheduling considerations

should be based updhe best available predictioraf how long jobs will run; this can be the user
estimate, but it can also be generated by the system, andweoré can change over time.

The system-generated prediction algorithm we use is vemplsi. The prediction of a new job

3Note the terminology: we will consistently use “estimatet the runtime approximation provided by the user
upon job submittal, and “prediction” for the approximatias used by the scheduler (which is system-generated
unless stated otherwise). For EASY, predictions and estisnare equal, that is, the predictions are set to be the user
estimates. The alternative is to use historical data torgémbéetter predictions, as we do in this paper.



J is set to be the average runtime of the two most recent jobbsvre submitted by the same user
prior to J and that have already terminated. If no such jobs exist wdék on the associated
user estimate (other ways to select the history jobs areidenmesl in Sec. 7). If a prediction turns
out higher than the job’s estimate it is discarded, and thenate is used, because the job would
be killed anyway when it reached its estimate. Implementimg predictor is obviously trivial.
Nevertheless, as shown below, this simple predictor isgmtusignificantly improve the accuracy
of the data used by the scheduler, which is sufficient for @ads in this paper. Investigation of

the effect of better predictors is left for future work.
3.2 Prediction Correction

A reservation computed based on user estimates will nevemadier than the start time of the
associated job, as estimates are runtime upper bduridss is no longer true for predictions,
as they are occasionally too short. At the extreme, pregistmight erroneously indicate that
certain jobs should have terminated by now and thus theagssors should be already available.
Assuming there aren’t enough processors for the first qugied, this discrepancy might lead to
a situation where/’s reservation is made for the present time, because thelglgreerroneously
thinks the required processors should already be available

Note that the backfill window is between the current time @owound) and the reservation
(upper). When these are made equal, backfill activity effelst stops and the scheduler largely
reverts to plain FCFS, eliminating the potential benefitsawfkfilling (Fig. 5, left/middle). Indeed,
when naively replacing estimates with predictions, theaye accuracy significantly improves (up
to doubled), but performance is nevertheless dramatieaihgened (up to an order of magnitude).

The solution is to modify the scheduler to increase expiredigtions proven to be too short.
For example, if a job’s prediction indicated it would run @ minutes, and this time has already
passed but the job is still running, we must generate a nedigtien. The simplest approach is to

acknowledge that the user was smarter than us and set thereéietpn to be the user’s estimate.

4Apparently, this is not always the case in practice, as Wnitirly be described.
5The only remaining backfill activity is on the expense of tletta” processors, which are the “leftover” after
satisfying the reservation for the first queued job [25, 26].
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Figure 5: Underpredicting the runtime of job 1 causes the schedulerake an early reservation for job 2
(left). This misconception prevents jobs 3 and 4 from beiagkfilled (middle). Correcting the prediction
once proved wrong enables the scheduler to reschedulestivagion and re-enables backfilling (right).
Once the prediction is updated, this affects reservationgdeued jobs and re-enables backfilling
(Fig. 5, right). While this may undesirably delay the resg¢ions made for queued jobs, such
delays are still bounded by the original runtime estimatée@running (underpredicted) jobs.

On rare occasions prediction correction is necessary esgonld the estimate, as in real sys-
tems jobs sometimes exceed their estimates (Fig. 6, battonmiost cases the overshoot is very
short (not more than a minute) and probably reflects the tieseled to kill the job. But in some
cases itis much longer, for unknown reasons. Regardlebg @xact reason, the prediction should
be extended to keep the scheduler up to date (independdr tzdt the job should be killed, and
maybeis being killed). As most of these jobs only exceed their estitbg a short time, we enlarge
post-estimate predictions in a gradual manner: The firststiljent adds only one minute to the
old prediction. This will cover the majority of the underiesated jobs (Fig. 6, top). If this is not
enough, the'” prediction correction addss x 2:=2 minutes (15min, 30min, 1h, 2h, etc.).

The results of adding prediction correction are shown in. Pab This compares the origi-
nal EASY with a version that uses user estimates as predgtod adds prediction correction
(EASYpcor), and a version that combines prediction correction witktesy-generated predic-
tions (EASY"). Note that while EASY:cor employs user estimates as predictions, correction is
still needed to handle the underestimated jobs discusskereRrediction-correction by itself has
only a marginal effect, because only a small fraction of tiesjare grossly underestimated. The
real value of prediction correction is revealed in EASYvhere system-generated predictions are
added: results show a significant and consistent improveafarp to 28% (KTH's slowdown in

Tab. 2). This is an important result that shouldn’t be takghtly. The fact that historical infor-
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CDF

100000 E

runtime - estimate [minutes]

trace| underestimated job

n

number %
SDSC| 4,138 7.7%
cTC 7,174 9.3%
KTH 478 1.7%
BLUE| 22,216 9.9%

Figure 6:Bottom: up to 10% of the jobs have runtimes bigger than usenates. Top: CDF of differences
between runtimes and estimates, of underestimated jobst ddtimate violations are less than one minute.

trace walit [minutes] b. slowdown accuracy%] avg. Corr.[+o]

EASY | EASY EASYt || EASY | EASY EASYt || EASY | EASY EASYt EASY EASY™T
PCOR all PCOR PCOR PCOR

SDSC 363|360 -1%| 326 -10% 99| 93| 6%/ 86 -13% 32| 32 +0%| 60 +87%]|| 0.0910.33 |0.5610.64

CTC 21| 21 +0%)| 16 -26% 46|45 -2%|3.3 -27% 39| 39 +0%| 62 +61%)||0.1210.41 | 0.63+0.69

KTH 114|115 +1%]| 96 -16% 90| 90 +1%| 65 -28% 47| 47 +0%)| 60| +28%)||0.0210.24 | 0.53+0.57

BLUE 130|128 -1%] 102 -21% 35| 36| +1%| 26 -25% 31| 31 +0%)| 61 +100%||0.1310.45 | 0.6010.69

avg. -0% -18% -2% -23% +0% +69%|| 0.09 0.58

Table 2:Average performance, accuracy, and overhead for schedariants. EASY>cor adds prediction
correction, and EASY also adds system generated predictions. Shaded colummshgwnges relative to
EASY in percents; negative values are good for wait time damadown, while positive ones are good for
accuracy. Right most metric shows the per-job average gfedicorrection numberi( std. deviation).
mation can be successfully used to generate runtime pi@akats known for more than a decade
[10]. Our results in Tab. 2 demonstrate for the first time théd may be put to productive use
within backfilling schedulers, without violating the coatt with users. Moreover, the overhead is
low, with predictions corrected only 0.56—0.63 times onrage per job.

Note that obtaining the reported improvement is almost fieéone has to do is create pre-
dictions as the average runtime of the user’s two most rgobatand set an alarm event to correct

those predictions that prove too short. Importantly, tldesinot change the way users view the

scheduler, allowing the popularity of EASY to be retainethally, note that this scheme signif-

11



icantly improves the average accuracy, which can be up tbldduBLUE) and is stabilized at

60-62% across all four traces when using EASY
3.3 Shortest Job Backfilled First (SIBF)

A well known scheduling principle is that favoring shorteb$ significantly improves overall
performance. Supercomputer batch schedulers are one f@tgpes of systems which enjoy a-
priori knowledge regarding runtimes of scheduled taskgthr through estimates or predictions.
Therefore, SJF scheduling may actually be applied. Momgegeseral studies have demonstrated
that the benefit of accuracy dramatically increases if ghgobs are favored [13, 32, 39, 28, 2, 29].
For example, Chiang et al. [2] show that when replacing usimates with actual runtimes, while
ordering the wait queue by descendi gTwTLT + % average and maximal wait times are halved
and slowdowns are an order of magnitude lofver.

Contemporary schedulers such as Maui can be configureddo fastimated) short jobs, but
their default configuration is essentially the same as in EfAS (SJF is the default only in PBS).
This may perhaps be attributed to a reluctance to change S€Rantics perceived as being the
most fair. Such reluctance has probably hurt previouslygeated non-FCFS schedulers, that
impose the new ordering as a “package deal”, affecting batikfidling and reservation order (for
example, with SJF, a reservation made for the first queuetigtiiis the shortest job, rather than
the one that has been delayed the most). In contrast, we SiuggEarating the two.

Our scheme introduces a controlled amount of “SJFnesshreserves EASY’s FCFS nature.
The idea is to keep reservation order FCFS (as in EASY) sorihgbb will be backfilled if it
delays the oldest job in the wait queuén contrast, backfilling is done in SJF order, that is,
Shortest Job Backfilled First — SJBF. This is acceptableumxthe first-fit essence of backfilling
is a departure from FCFS anyway. We argue that in any casécie§dBF is more sensible than
“tricking” EASY into SJFness by doubling [39, 26] or randaimig [28] estimates (see Sec. 6).

Results of applying SIBF are shown in Tab. 3. In its simplession this reordering is used

5Recall thafT,, andT;. are wait- and run-times. Short jobs are favored since theemator of the first term rapidly
becomes bigger than its denominator. The second term islad@a effort to avoid starvation.

12



trace wait [minutes] b. slowdown accuracy%]

EASY| EASY |EASYTH|PERFECTY1||EASY| EASY |EASYTT|PERFECTYT||EASY| EASY |EASY+T |PERFECTTT

SJBF SJBF SJBF

SDSQ| 363361 -0%327 -10%4278 -23% 99| 87-12% 70 -29% 58 -42% 32 32/ +0% 60 +879%4100  +211%
CTC 21| 19-10% 14 -33% 19 -10% 4.63.9-14%2.9 -37%2.8 -39% 3939 +0% 62 +619%4100  +158%
KTH 114102-11% 95 -17% 91 -20% 90| 73-19% 57 -36% 50 -449% 47| 47 +0% 61 +289%4100  +111%
BLUE 130102-21% 87 -33% 87 -33% 35| 21-42% 19 -47% 13 -64% 31| 31 +0% 62+102% 100 +225%
avg. -10% -23% -22% -22% -37% -47% +0%) +70% +176%

Table 3:Average wait, bounded slowdown, and accuracy of EASY costbaiith three improved variants.
EASYs  pr just adds SJF backfilling (based on original user estimateg)SY*t+ employs all our opti-
mizations: system-generated predictions, predictiomection, and SIBF. PERFECT is the optimum,
using SJBF with perfect predictions. Shaded columns shqwawement relative to traditional EASY.
with conventional EASY (i.e. using user estimates and ndiption correction). Even this leads
to typical improvements of 10—20%, and up to 42% (BLUE’s laechslowdown).

Much more interesting is EASY" which adds SJBF to EASY (namely combines system-
generated predictions, prediction correction, and SJBRi)s usually results in double to triple
the performance improvement in comparison to EASY- and EASY". Performance gains are
especially pronounced for bounded slowdown (nearly halwé&l UE). There is also a 33% peak
improvement in average wait (CTC and BLUE). This is quite liegsive for a scheduler with
basic FCFS semantics that differs from EASY by only a few dszénes of code. Even more
impressive is theonsistencyf the results, which all point to the same conclusion, asoepgd
to other experimental evaluations in which results depémuadtethe trace or even the metric being
used [32, 8]. The accuracy of EASY is similar to that of EASY at 60—62%.

Finally, we have also checked the impact of having perfeatijgtions when SJBF is employed
(here there is no meaning to prediction correction as ptiedis are always correct). It turns out
PERFECT * is marginally to significantly better than EASY with the difference being most
pronounced in SDSC, the site with the highest load (Tab.rihéu discussed below). Interestingly,
EASY** outperforms PERFECT" in CTC’s average wait. This is due to subtle backfill issues

and a fundamental difference between CTC and the otheradsgmalyzed by Feitelson [8].
3.4 Varying the Load

All results in this paper evaluate our suggested optinoratiusing the workloads “as is”. Here,

through trace manipulation, we complement our measurengninvestigating the effect of load.
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Figure 7: The relative performance of EASYand EASY"™ typically improves with medium or higher
loads.

Load is artificially varied by multiplying all arrival timeBy a constant (e.g. if BLUE’s original
load is 76%, we can raise it to 80% by multiplying all arrivathés by%). Results show that
PERFECT T is better than EASY™, which is better than EASY, which is better than EASY
(Fig. 7). Higher loads usually intensify the trends pointed earlier, but the precise effect of the
optimizations is workload dependent. EASY benefits are relatively small in SDSC, especially
under high loads; for KTH the biggest improvement occurgritgrmediate loads of around 70—
80%; for CTC, the improvement over EASY grows with load, asmchost significant towards 90%.
Examining PERFECT', we see that in all cases accuracy becomes crucial as loalitioos

increase, generating a strong incentive for developintggbptediction schemes.

4 Predictability

Previous sections have shown that, on average, replacergestimates with system-generated
predictions is beneficial in terms of both performance araigry. However, when abandoning
estimates in favor of predictions, we might Iggedictability. The original backfilling rules state
that a jobJ, can be backfilled if its estimated termination time does nolate the reservation
time R, of the first queued joly;. SinceJ, is killed when reaching its estimate, it is guaranteed
that.J; will indeed be started no later thdty. However, this is no longer the case when replacing
estimates with predictions, d#, is computed based on predictions, but jobs are not killednwhe
their predicted termination time is reached; rather, theysamply assigned a bigger prediction.
For example, ifJ, is predicted to run for 10 minutes ait] happens to be 10 minutes away, then

Jy will be backfilled, even if it was estimated to run for (saydetd hours. Now, if our prediction
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turned out to be too short anf] uses up its entire allowed three houss,might be delayed by
nearly 3 hours beyond its reservation.

Predictability is important for two main reasons. One isghpport ofmoldablegobs [6, 32, 4],
that may run on any partition size (according to [5P8% of the jobs are moldable). Such jobs
trust the scheduler to decide whether waiting for more naddsecome available is preferable
over running immediately on what's available now. Predidity is crucial for such jobs. For
example, a situation in which we decide to wait for (say) 3Gwies because it is predicted a
hundred additional nodes will be available by then, only nal fihat the prediction was wrong, is
highly undesirable. The second reason predictability igdrtant is that it is needed to support
advance reservations. These are used to determine whible sftes composing a grid is able to
run a job at the earliest time [24], or to coordinate co-atam in a grid environment [19, 31], i.e.
to cause cooperating applications to run at the same timestinat machines. Note that in this
case underprediction is as bad as overprediction, e.g. doidebroker that must select where to
dispatch a job. Knowing that resources would become avaiksdrlier could shift the balance.

The question is therefore which alternative (using es&ésat predictions) yields more credible
reservation times. To answer it, we have characterizedigtglaition of the absolute difference
between a job’s reservation and its actual start time. ®anly computed for jobs that actually
wait, become first, and get a reservation; jobs that are bigckér started immediately don’t have
reservations, and are therefore excluded. A schedulereasi minimize both the number of jobs
that need reservations and the differences between tisemvaions and start times. Note that with
prediction correction a job may have multiple reservatidusng its life; we use the first for the
predictability measurements.

The predictor we use (in this section only) is slightly diéfat from the one used in Sec. 3: in-
stead of using the last two jobs to make a prediction, we osdythem if their estimate is identical
to that of the newly submitted job; otherwise, we fall backlo@ user estimate. The reason is that
this is the optimal predictor in this case; a full discussdbthe tradeoffs along with results for the

predictor used so far are given in Sec. 6. Results are showahin4. Evidently, the rate of jobs
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trace rate[% of jobs] avg. diff. [minutes] median diff.[minutes] stddev diff.[minutes]

EASY | EASYT | EASYtT || EASY | EASYT |EASYtt || EASY | EASYt |EASYtt || EASY | BEASYT | EASY T+
SDSC 17| 14 -18%| 15 -15% 171| 93 -46%| 91 -47% 64| 20 -69%| 19 -70% 471|174 -63%| 168 -64%
CTC 6.8/5.4 -19%| 5.7 -16% 51| 29/-43%| 27 -46% 8.3/2.2 -73%| 1.9 -78% 92| 74 -20%| 69 -25%
KTH 15| 14 -8%| 14 -8% 38| 35| -7%| 35 -7% 6.3|3.2 -49%| 3.2 -49% 84| 90 +7%| 88| +5%
BLUE 9.6|7.5 -22%| 7.8 -18% 68| 45/-33%| 45 -34% 16| 3.3 -79%| 3.4 -79% 212|191 -10%| 184 -13%
avg. -17% -14% -32% -34% -68% -69% -22% -24%

Table 4:Effect of predictions on the absolute difference betwesemetions and actual start times. Rate is
the percentage of jobs that wait and get a reservation. Btgtand statistics of the distribution of differences
are reduced with predictions, indicating improved perfance and superior predictability, respectively.
that need a reservation is consistently reduced by 8—22% whedictions are used, indicating
more jobs enjoy backfilling and reduced wait times. The réshe table characterizes the asso-
ciated distribution of absolute differences between regEms and start times. Both EASYand
EASY** obtain big reduction in the average differences: e.g. onGH®m almost 3 hours (171
minutes) to about an hour and a half (91 minutes). Reductromedian differences are even more
pronounced: they are at least halved across all traces,ani®$?o top improvement obtained by
EASY** on BLUE. The variance of differences is typically also regllicsometimes significantly,
with an exception of a 5—-7% increase for KTH. The bottom lis¢hierefore that using runtime
predictions consistently and significantly improves pceahility of jobs’ starting time.

Improving the quality of reservations on average is detgraly. for grid co-allocation where
it is important for a job to start exactly on time. Howeversittonceivable some systems would
care more about jobs being delayed beyond their reservatian started earlier. Tab. 5 shows the
rate of delayed jobs and the distribution of actual delaygerBwith plain EASY 0.1-1.5% of the
jobs are delayed, because (as reported earlier) jobs soasetutlive their user estimates. Un-
fortunately, when predictions come into play, the delaysobge much more frequent and involve
1.3-3.8% of the jobs. On the other hand, both the averagg dethits standard deviation are dra-
matically reduced, e.g. SDSC’s average drops from about@uss (513 minutes) to less than 1.5
(86 minutes) and its standard deviation drops at a simitar fdedians values, however, increase
by up to an order of magnitude (KTH/SDSC), though in absdletms they are all less than ten
minutes. This indicates that EASY’s delay-distributiorhighly skewed and that our techniques

curb the tail, at the expense of making short delays moreiéei
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trace] rate[% of jobs] avg. delayminutes] median delayminutes] stddev delayminutes]

EASY| EASY™T EASYTT ||[EASY | EASYT |EASYTT||EASY| EAsyt EASYTT ||EASsY| EASYT |EAsYy T
SDSC| 1.5/3.8 +149% 3.8 +150% 513| 92 -82%| 86 -83% 0.9|8.6/ +896%)8.3 +859%| 1442223 -85%|206 -86%
CTC 0.7/1.3 +81%|1.3 +83% 72| 37 -49%| 34| -53%) 1.9(3.00 +62%|(2.6 +43%]|| 119/102-14%| 94-21%

KTH 0.1]1.8+1518% 1.8 +1493% 58| 52 -11%| 44 -23% 0.7| 11 +15419%49.9 +1428%| 108|107 -1%| 87 -20%
BLUE 0.9/1.8 +97%|1.8 +102% 48| 35/-28%| 31 -35% 0.8/2.2° +174%2.1 +165%| 318|154 -52%| 136 -57%
avg. +461% +457% -42% -48%) +668% +624% -38%) -46%

Table 5: Effect of predictions on the delays beyond a job’s resesvatiWith predictions, the rate and
median delay are increased, but the average and standaati@ewf delays are reduced.

Nevertheless, there are two solutions for systems that ttwlevate delays. One is to employ
double booking: leave the internals of the algorithms basegredictions, while reporting to
interested outside parties about reservations which wioaNé been made based on user estimates
(never violated if jobs are killed on time). This solutiorj@rs EASY**’s performance but suffers
from EASY’s (in)accuracy. The other solution is to backfdbg in prediction order, but only if
their user-estimated termination falls before the red@ma This ensures backfilled jobs do not
interfere with reservations, at the price of reducing thekfiing rate. Indeed, this algorithm
enjoys all the benefits of the+” variants in terms of internal accuracy, while being simitat
better than EASY with respect to unwarranted delays. As éofgpmance, it is 1-10% better than
that of EASYs ;5 (Tab. 3).

5 Relationship With Other Algorithms

Our measurements so far have compared various schedulisgnes, culminating with EASY",
against vanilla EASY. However, other variants of backfglschedulers have been proposed since
the original EASY scheduler was introduced. In this respeid desirable to explore two aspects:
comparing EASY " against some other generic proposals, along with invesim¢he effect of
directly applying our optimization techniques to the oteelnedulers themselves.

We have chosen to compare EASYagainst the two generic scheduling alternatives that were
previously mentioned in this paper: EASY with doubled us&tineates (denoted2), and SJF
based on user estimates (as a representative of seveeaédiftchemes that prioritize short jobs).
The results are shown in Tab. 6. EASY outperformsX2 by a wide margin for all traces and

both metrics. It is also rather close to SJF scheduling isagks, and outperforms it in one case
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trace wait [minutes] b. slowdown accuracy%)

EASY X2 SJF EASYtT || EASY X2 SJF |EASYtT||EASY X2 SJF EASY Tt
SDSC 363|333 -8%|535 +47%| 327 -10% 99| 89 -10%| 69 -30%| 70 -29% 32| 16 -49%| 32 -0%| 60 +87%
CTC 21| 20 -8%)| 13 -38%| 14 -33% 4.6/4.1 -10%| 2.8 -40%| 2.9 -37% 39| 20 -49%| 39 +0%| 62/ +61%

KTH 114/102 -11%| 79 -31%| 95 -17% 90| 80 -11%| 45 -50%| 57 -36% 47| 24 -50%| 47 -0%| 61 +28%
BLUE 130(115 -11%| 81 -38%)| 87 -33% 35| 30 -15%| 25 -29%| 19 -47% 31| 16 -47%| 31 +0%| 62 +102%
avg. -10% -15% -23% -12% -37% -37% -49% +0% +70%

Table 6: Average wait and bounded slowdown achieved by EASYompared with two other schedulers
proposed in the literature: doubling user estimates an@juSJF scheduling.

(SDSC'’s wait) where SJF fails for an unexplained reason. dawantage over SJF is, of course,
the fact that EASY ™ is fair, being based on FCFS scheduling with no danger ofatian. Also,
the gap can potentially be reduced if better predictiongarerated.

As mentioned earlier, EASY" attempts to be similar to prevalent schedulers’ defautiregpt
(usually EASY [7]) in order to increase its chances to repldem as the default configuration.
But the techniques presented in this paper can be used toadray backfilling algorithm. Tab. 7
compares vanilla&2 and SJF to their corresponding “optimized” versions: Initdid to doubling
of estimates (recall that these serve as fallback predigtichen there’s not enough historg2*
replaces estimates with (doubled) predictions, and ensppogdiction correction.X 2" adds
SJBF toX2". Finally, SJF is similar to EASY"*, but allocates the reservation to the shortest
(predicted) job, rather than to the one that has waited th&t.m®he theoretical optima ok 2+,
X2%*, and SJF, are X2, 7, X 2;;&, and SJE., s, respectively (use perfect estimates instead of
system-generated predictions).

Tab. 7 shows that switching frod¥2 to X 2" can better performance (up to -18% in CTC's
wait and KTH'’s slowdown) or worsen it (up to +8% in BLUE’s sldawn), though improvements
are more frequent and on averagé2™ is 4-6% better thanX2. When further optimizing by
adding SJBF X2*1), performance is consistently better, with a common improent of 25-
33%. The result of upgrading SJF to SJi5 once again inconsistent among traces/metrics, but
here too improvements are more frequent (4-8% on averaga)l. dases, using prefect predictions
(X2pers, X2, 1, and SJF., ;) leads to consistent improvements in performance, initigadrior

inconsistency steamed from our simplistic predictor andivating the search for a better one.

’SJF" and SJE are equivalent because both employ SJBF by definition.

18



trace doubling shortest job

wait [minutes] b. slowdown walit [minutes] b. slowdown
X2| X2T | X2y | XotF | x2ft o |X2| X2t | X205 | X2V | X22F [SUF| SIFT | SUFue.p||STF| SIFT |STFpers
SDSQ|333357 +7%293-129%9333 -0%]270-19% | 89| 94 +6% 77-13% 67-25% 58-34% | 535308 -42%270-50% | 69| 34 -51% 19-73%
CTC || 20| 16-18% 18 -8%| 15-25% 16-16%|4.13.6-139%43.2-219%3.0-28%2.5-38%| 13 12 -11% 12-11%| 2.82.4 -129%41.8-35%
KTH ({102 98 -4%| 95 -6%| 93 -8% 84-18%| 80| 66-18% 70-13% 53-33% 50-38% | 79 87+10% 67-16%| 45| 44 -2% 24-46%
BLUE||115105 -9%|107 -8%| 86-26% 80-31%| 30| 33/ +8% 28 -7%) 21-32% 12-59% | 81 90+11% 50-39%| 25| 37+49%5.4-78%

avg. -6%) -8%) -15% -21% -4%  -14% < -30%  -42% -8% -29% -4%|  -58%

Table 7:Average performance and (shaded) improvement when ogitignianilla X2 and SJF.

6 Does Better Accuracy Imply Better Performance/Predictabity?

This study is based on the notion that superior accuracyldheault in improved performance
(better packing) and predictability (better individuahtime predictions). However, we have also
witnessed several occasions in which these metrics corifhetfirst and most obvious is shown in
Fig. 3 where deliberately making estimates less accuratgb{thg) consistently improves perfor-
mance. Asecondexample is related to the predictor switch done in Sec. 4odgmout this paper
we've used arall prediction window, where the last two terminated jobs by ghme user were
used for prediction, regardless of their attributes. Intast, in Sec. 4 we've used ammediate
window, in which we generate a prediction only if these twlgdave user runtime estimates that
are equal to that of the newly submitted job (i.e. they armilgir”). The fact of the matter is that
all (which is more accurate) is better for performance, wheimasediate appears as better for
predictability (Tab. 8). Further, third example is that the performance iafmediate-EASY™
and X2 is very similar (Tab. 9). These schedulers are identicavarerespect, except EASY
uses runtime predictions where&8 uses something that is even less accurate than user egimate
(user estimates that are doubled). The fact the two yieldaimerformance raises the question of
whether it is worthwhile to even bother with runtime predint

This section addresses these three examples and explaaseslly happens to make accu-
racy and performance seem contradictory. We begin by exptawhy doubling estimates helps
performance [36]. Assume all runtime estimates are pdyfacturate (the same explanation holds
for user estimates). Fig. 8 illustrates the dynamicsy{@fbackfilling. Based on the information

available to the scheduler @ (time 0), it appears the earliest time fdéy (job 3) to start is7},,
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tracel performance accuracy|| prediction DYabs DYdelay

wait [min] b. slowdown rate [job %)] rate [job %] minutes rate [job %] minutes
imm all imm all imm all imm all imm all imm all imm all imm all
SDSC|| 363327-10% 81| 70-13%| 56|60 +8%|| 59 89 +52%| 15 12-21% 9198 +8%| 3.85.0 +30% 86|150 +74%
CTC 17| 14-16% 3.62.9-20%| 59 62 +6%|| 63 90 +449%| 5.7/5.1-11% 27|27 -1%|| 1.31.7 +26% 34| 53 +56%
KTH 98 95 -3% 6757-15%| 58/ 61 +5% | 39 84+115%| 14{11-22% 35 63+78%| 1.83.6+106% 44|149+236%
BLUE|| 100 87-13% 19 19 -2%|| 59 62 +5%| 70 90 +29%| 7.85.2-33% 45 65+46%| 1.82.0 +10% 31|/136+333%
avg. -10% -12% +6%) +60% -22% +33% +43% +175%

Table 8: Comparing themmediate andall versions of EASY ™ pya.. relates to metrics from Tab. 4
(absolute difference between start time and reservatign)i., relates to metrics from Tab. 5 (delay beyond
a reservation). Thall version is~10% better in terms of average performance and 6% more decura
Nevertheless, despite its improved accuracy, it seemsogeln predictability: it9yqs rate is 11-33%
lower (good), but the actual difference might be 78% higkdrH); worse, both rate and duration of delayed
jobs are significantly increased (KTH'’s rate is doubled, B’¢)delay is more than quadrupled).
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Figure 8: The dynamics ofX2 backfilling. Job numbers indicate arrival order. The lefttjpm of jobs
(green/dark) indicates their real runtimes. Due to the tioghthe scheduler views jobs as twice as long
(right portion; yellow/bright). The bottom arrows show ihegress of time, whereas top black arrows show
the earliest time at which job 3 would have been started, babiruntimes been known (at that particular
point in time). The thief’s width shows the amount of “stdlgime, at the expense of job 3.
even though theeal earliest start time is actuallyj;. Thus, the scheduler makes a reservation on
J3's behalf forT;, and can only backfill jobs that honor this reservationIAt.J, terminates. As
Ji is still running, nothing has changed with respeci§s reservation, and so the scheduler scans
the wait queue in search of appropriate candidates for b&ogfi .J, fits the gap betweeh,; and
the reservationl(;;) and so it is backfilled, effectively pushing back the realiest time at which
Js could have started fror; to 7.

This “heel and toe” scenario, of repeatedly pushing awayetriest starting point of the first
gueued job, may continue uniil, is reached. During this time, the window between the current
time and the reservation time is continuously shortenech $liat waiting jobs that fit this open

gap get shorter and shorter. It is this limited form of “SJ3iewhich is the source of th& 2

performance improvement: Note that waiting jobs that asggagd a reservation are usually both
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tracel|wait [minutes]|b. slowdow trace]|stalled ratgw]|| stall time[min] || avg. thieves #
imm X2 imm X2 EASY X2 EASY X2 EASY X2
SDSC]| 343333 -3%| 92/89 -3% sSDSC| 7.2 11 +49% 91137 +50%4| 1.92.1 +9%
CTC || 18 20 +7%| 3.7/4.1+10% CTC 9.1 11/ +9% 35| 50 +42%| 2.5/2.8 +10%
KTH || 108102 -6%|| 7980 +2% KTH 7.0 11/ +61% 51/107+111%| 1.6/2.3 +45%
BLUE|| 121]115 -49%| 31|30 -3% BLUE|| 9.2 12 +29% 54/118+119%| 2.33.1 +33%
avg. -2%) +2% avg. +39% +80% +24%

Table 9: X2 andimmediate Table 10: “Heel and toe” effect is amplified due t&§2. Rate is the

EASY™ vyield similar perfor- percent of jobs that had their earliest start time pusheé tae to the

mance despite the fact they areffect, out of waiting jobs that got a reservation. Statidiis the av-

identical except the latter im-erage period between a job’s earliest start-time (compabedrding to

proves predictions whereas thperfect estimates) and its actual start-time. “Thieveslidate the per-

former worsens them. job average number of times the earliest start-time is mlisfaek (3
times forJs in Fig. 8).

long and wide (under EASY, we measured the average runtgtie&te and size to be 7 hours and
17% of the machine’s processors, respectively). As sh@ter are prioritized at the expense of
these jobs, whak2 is really doing istrading off FCFS-fairness for performancéndeed, when
doubling real user estimates the “heel and toe” effect iattyramplified (Tab. 10).

Based on this analysis, comparing betweééh andimmediate EASY™ (Tab. 9) is actually
comparing between different types of unrelated anthogonaloptimizations: favoring shorter
jobs vs. improving predictions. Thus, we contend that dimgighould be viewed as a property of
a schedulemot the prediction algorithm. Indeed, both Fig. 3 and Tab. 7aaté that doubling of
improved predictions (whether perfect or based on histgiglfls better performance than when
doubling the lower quality user runtime estimates. So mteds should strive to make the best
predictions they can and leave the choice of whether to @oattrhot in the hands of the scheduler.

The remaining open issue is thadt, which is more accurate, seems less predictable ithan
mediate in Tab. 8. Neverthelessg]l is actually more predictable. First, consigert,,. While the
absolute difference undémmediate is reduced, the rate of jobs that suffer such a difference is
significantly higher. To see which of the two metrics have enionpact (rate or difference), we
computed the average difference with respedltahe jobs in the log (product of Tab. 8's “rate”
and “minutes” columns, divided by 100). This reveals talhtis actually more predictable than
immediate in 3 out of the 4 logs.

As for pyaeay, this metric is actually very problematic and should not becualone. For ex-
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ample, X2 obviously reduces the accuracy of estimates, but has mwetr j@y,.;,, than using
the estimates as is, because it computes reservations trasedealistically too-long predictions;
tripling the estimates would make the effect even more pnoned. Likewisejmmediate pro-
duces less predictions thaill and therefore falls back on user estimates more often (Tab. 8
prediction rate). This explains whynmediate is less accurate. Additionally, as estimates are
bigger than predictions (by definitioriinmediate’s reservations are further away in the future. In
other words pyq.q, is an unreliable predictability metric as it only accourds fone side to the

coin”: jobs that rudater than their reservation.

7 Tuning Parameters

The EASYT algorithm has several selectable parameters that mayt affeiormance. We have
identified seven parameters (formally defined later on)dhamainly concerned with the definition
of the history window which previous jobs to use, and how to generate the predictbome of
these parameters have only two optional values, while stig@re a wide spectrum of possibilities.
To evaluate the effect of different settings, we simulatk@,640 possible parameter combina-
tion$, henceforth called¢onfigurationsusing our four different workloads. This led to a total of
nearly 35,000 simulations (8,640 times the 4 trafeshere each simulation yielded two perfor-
mance metrics (average wait and slowdown). Thus, each cwafign (that is, parameter combina-
tion) is evaluated by eight trace/mettestcase${ SDSC,CTC,KTH,BLUE x {wait,slowdowr}).
The results of the simulations indicate that the “perforogesurface” is extremely noisy. There
are many different and seemingly unrelated configuratioasachieve high performance, but there
is no single configuration that is best for all eight testsase order to provide effective guidance
in choosing the parameters we therefore performed a joslysis of all the data. Our goal is to
find the best configuration, where “best” means robust godpeance under all eight testcases.

We anticipate that such a configuration will also performlwelder other conditions, e.g. with

8Product of the number of different values each parametertmag. Following the left-to-right parameters’ order
in Fig. 9, thisis:3 x 2 x 2 x 2 x 4 x 3 x 30 = 8, 640; see detailed explanation below.

9Some combinations were actually equivalent and were thegehly done once; an example is making predictions
using the average, median, maximum, or minimum of histolog jwhen there is only one history job.
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rank average configuration

performance|| window | window | fullness| metric | fallback | propagation| prediction
degradation size type correction

1 9.41% 11 all partial avg est yes estimate

2 10.60% 3 ext full avg rel yes estimate

3 10.84% 16 all full med rel yes estimate

4 11.16% 21 all partial | med rel yes estimate
5 11.25% 10 all full med est yes estimate
6 11.31% 4 ext partial min rel yes estimate
718 11.47% 9 all partial | med rel/est no estimate
9 11.56% 2 ext full min est yes estimate
10/11 11.61% 22 all partial | med rel/est no estimate

8640 239.88% 26 all full min est no gradual

Table 11:Top and bottom ranked configurations.

new workloads, as will be explained below.

The analysis is done as follows. We start by ranking all 8 &attfigurations (parameter com-
binations) in two steps. First, we evaluate the “degradatiqperformance” of each configuration
c under each trace/metric testcas@&his is done relative to the best performing configuratidor
that testcase, as follows: 1€} and P. be the performance éfandc undert, respectively, then’s
degradation underis defined to baoo% — 100. Thus, each configuration is now characterized
by eight numbers, reflecting its relative performance deaian under the eight testcases. In the
second step we average these eight values and the configusratie ranked accordingly: the best
configuration, with théowestaverage performance degradation, has rank 1; the worsgcoafi
tion has rank 8,640. Even with this ranking, the top confiars are rather diverse (Tab. 11;
parameters will be discussed shortly).

It is important to note that our methodology is findingc@ampromisethat reflects all eight
testcases. For example, the top ranking configuration igapstanked for any of the testcases
individually. Instead, it suffers a degradations rangirmnf 4.1% to 21.8% relative to the best
configurations for each testcase. But its average degoadatonly 9.4%, which is lower than the
average of any other configuration.

Recall we are searching foobustconfigurations. This robustness should manifest itself by

being immune to trivial changes and small modification. Téranking configuration does not

23



pred. correction fallback propagation fullness metric window type window size

—_
(=]
=
—_ T T T

u— 2 ‘ :

55 L

=1

&

EZ

C? [eNoNoNoNoNe) [eNelololNoNol o o o o [eleololNoNoNe) [eNeoloNoNoN
— N < © 0 O N < © o O N < © 0 O N < © 0 O N < © 0 O
c — — — — —
8 gradual estimate no full max _extended

exponential . relative Hl es artial EE min immediate W

estimate El median all mm

rank [%]

Figure 9:Distributions of ranked configurations, as a function ofteparameter. Rank values (X-axis) are
converted to percents by dividing them with 8,640. Confitjars are aggregated into 5%-sized bins. For
example, with prediction correction (left subfigure), ab60% of the 5%-top-ranking configurations are
associated witlkstimate and the remaining 10% are associated withonential.

qualify as such: it uses 11 jobs for its prediction windowt, Wwhen this value is replaced with 12,
the associated configuration is ranked 1,295 and suffeublethe average performance degra-
dation. It would be ludicrous to assume 11 is a magic numbert@amecommend using it based
on this analysis. We therefore search focantiguous subspaasithin the configuration space
(namely, a set “near by” configurations), such takhits population yields good results.

The distributions of the different parameter values arenshim Fig. 9, and we now discuss
each one in turn, starting with those that are easiest taacteize (left to right). The first pa-
rameter is how to performrediction correction (when the predicted termination has arrived but
the job continues to run). One option is to simply revert te dniginal userestimate. Other
options are to grow the predictigradually (by predefined increments as in Section 3), or in an
exponential manner (by adding e.g. 20% each time). The results (Figft9 clearly indicate that
it is best to jump directly to the full usexstimate, and not to first try lower predictions, as this
option dominates 90% of top-ranked configuration. This @bpbly so because using the full user
estimate opens the largest window for backfilling. Usirggadual increase is especially bad, and
dominates the bottom half of the ranked configurations.

When we cannot generate a prediction due to lack of histanéarmation, we use the user
estimate as arediction fallback. Theestimate can be used as is, or it can baatively scaled
according to the accuracy the user had displayed previ¢88ly The results (Fig. 9, “fallback”)

show thatrelative provides a slight advantage, as it appears more often inrhaigting configura-
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tions.

The next two parameters (“propagation” and “fullness”hed out not to have such decisive
results, at least not when considered in isolatPropagation refers to the action taken when new
data becomes available. For example, if we make a predifdgicennewly submitted job, and later
a previous job terminates, should we update the predictamedb on this new information? The
second is windoviullness The window is the set of history jobs that is used to gengregdic-
tions. The two options are to allowpartial window, meaning that a prediction is made based on
whatever data is available, or to requireui window and use the user estimate as a fallback if not
enough jobs are available. For both these parameters, fsébpovalues are approximately evenly
spread across the ranked configuration. The slight advamtiagropagation seems not enough to
justify its computational complexity. On the other hapdrtial is significantly better when larger
prediction windows are employed (not shown).

The last three parameters have intricate interactionsathiagventually lead to the configura-
tion subspace we seek. The first is irediction metric. Given a set of history jobs, how should
a prediction be generated? Four simple options are to usavdrage, median, minimum, or
maximum of the runtimes of these jobs. Evidentiginimum tends to lead to a low-ranking con-
figuration, and thenaximum to a middle rank. Thaverage and themedian share 80% of the
top-ranked configurations, leaving the question of whicé simould be used.

A harder question occurs with theindow type. The three types arall, meaning that all
recent jobs are eligiblammediate, meaning that recent jobs are used only if they are similar
to the new job (same estimate), @ttended, meaning similar jobs are used even if they are not
the most recent (using the entire user history). The probethat theall distribution has a U
shape: it accounts for more than half the top-ranked corsdtguns, but also for two-thirds of the
lower-ranked ones.

Finally, a third difficult question is how to set tleindow size (the number of history jobs to
consider). We simulated all sizes in the range 1-30; thelgffalg. 9, right) shows them in bins of

5. Smaller windows are more common in high-ranking confijons, but there is no range-size
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Figure 10: Average performance degradation (along with its standaviation) are more or less linearly
proportional to the number of history jobs being used, iatiiy smaller windows are preferable.
that can be said tdominatehigh-ranking configurations.

To solve these problems we need to employ additional coretidas, and to carefully study
the interactions among the problematic parameters. We wsitdr the window type parameter.
There are actually big advantages to usingath&indow type. First, its evident top ranking peak.
Second, it is easier and more efficient to implement, becaesest need to keep a record of the
runtimes of the last terminated (and most recently subdjijtds by the user, and do not need to
check for job similarity. The problem is that many configioas that employ aall window type
are low ranking. The question is therefore whether we cardatiem (and how). Luckily, this can
be done by a judicious choice of the other parameter values.

Specifically, there are 1298 configurations in the bottonkea 30% that employ aall win-
dow type. Of these, only 194 use tlstimate directly as a prediction correction. As using
estimate was shown above to be obviously beneficial, this helps eltei85% of the problem-
atic configurations. Of the remaining configurations, 186 tiieminimum prediction metriand
employ a relatively large prediction window# (7, with average of 18.8). It turns out the huge tail
of minimum (Fig. 9) is mostly associated with large window sizes, arad ithcreasing the window
size consistently worsen the average degradation aatibbssnfigurations. In fact, Fig. 10 shows
the connection between size and degradation is almost lfheth average and variance), with the
exception that 2 is slightly better than 1.

The bottom line is that using ail window-type is actually safe in combination wiglstimate
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Figure 11:Left: chosen subspace (typak correctionestimate) with decreasing window size. Others:
parameters distribution within the smallest shown subsgsize< 3).

parameter |description suggestion perf. degradationsize=1 size=2 full space
window sizelhow many history jobs to considef1-2 min 11.799 12.0% 9.4%
job selectionwhich jobs to include in the windoyall max 15.3%9 14.7% 239.9%
metric how to generate predictions average average 14.29%913.4%  30.4%
correction |how to increase too-short predictifuser estimate std. deviation 1.2% 0.7% 10.1%

Table 12:Suggested settings for EASY (left), and performance degradation statistics of sizesize=2
configurations within this chosen subspace, compared tstétistics of all 8,640 configurations (right).

prediction correction and a small window size (7), eliminating more than 99% ddll's tail
configurations and clearly making it the best choice. Inddleid subspace seems to meet our
robustness demands, as is shown in Fig. 11 (left), becalige @nfigurations are high ranking.
Accordingly, we choose to limit the window size of our choseibspace to be 3. The rest

of the sub-figures explore the remaining parameters withisidubspace. Clearly, average is the
preferable metric. Additionally, 1-2 sized windows arefprable over 3. However, it is hard to
decide between the two because size=2 dominates the top (a@%he worst-case of size=1 is
better than that of size=2, and so we seem to have a tie. As #ineralso no clear winners within
the other parameters, we conclude by summarizing our re@ndations in Tab. 12, which match
the prediction algorithms used in this paper.

Note that our conclusions are in disagreement with prewaur&: Gibbons used all the history
available [13], and Smith et al. experimented with a limikestory just to reduce the size of the
search space, implying a preference for the full history, [38ge 129]. However, they did not
show results. We too intuitively felt that when using higtat information, it would be necessary

to focus onsimilar jobs, i.e. those with the same partition size, executalsmnate, etc. This
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has motivated the definition of tlextended window type. However, the results clearly show that
recencyis more important than similarity (Fig. 10) — it is better teeLthe last job by the same user
than to search for the most similar job. This implies thatdierheads for storing and searching
through data about different classes of history jobs (aoredn e.g. [30, 32, 19, 20, 24]) can
be avoided altogether. Arlitt et al. reached a similar cosidn in the context of the World Wide
Web, contending “only the topmost stack element is seeigigifstant reuse” when predicting a
destination of a work session based on the user’s history [1]

We note in passing that in addition to preferring to use alilable history, Gibbons also used a
different prediction metric: the 95th percentile of histgobs [13], which is close to the maximum

metric, and was shown above to be inferior to the average.

8 Conclusions

The most popular scheduling policy for parallel systems3§8 with backfilling, as introduced by
the EASY scheduler [11, 7]. With backfilling, users must dy@m estimate of how long their jobs
will run, to enable the scheduler to make reservations asdrerthat they are respected. But user
estimates are highly inaccurate and significantly redustesy performance [35]. The alternative
is system-generated predictions based on users’ histbriR, 30, 19, 26, 20], which are consid-
erably more accurate. Nevertheless, predictions werer mes@ porated into production systems.
This paper is about identifying the problems causing thisasion, and providing applicable and
easy to use solutions to all of them. Specifically, we idgrttifee major difficulties and thus the
contribution of this paper is threefold.

The first difficulty is of technical nature. Under backfillingser estimates are part of the user
contract: jobs that exceed their estimates are killed bysyiséem, so as not to violate subsequent
commitments. This makes system-generated predictionstabke, as some predictions inevitably
turn out too short, and users will not tolerate their jobsngekilled prematurely just because
of erroneous system speculations. Researchers that rfosedroblem failed to solve it within
the native backfilling framework [13, 26, 2, 22], but our d@un is rather simple: (1) use user

estimates exclusively as Kill-times, (2) base all othereskciing decisions on system-generated
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predictions, and (3) dynamically increase prediction$ived by their jobs, and push back affected
reservations, in order to provide the scheduler with a tulthiew of the state of the machine.
Applying this to EASY usually results in @25% reduction in average wait time and slowdown.
We call this improved algorithm EASY.

The second major difficulty is related to a common misconoauggesting inaccuracy actu-
ally improves performance, implying that good estimatesaatually “unimportant”. This relies
on a number of studies showing significant improvements vdeéiberately making user estimates
even less accurate (by doubling or randomizing them [392@PB, In this respect, our contribution
has two parts: (1) explaining this surprising phenomenad, @) exploiting it. Doubling helps
because it induces “heel and toe” backfilling dynamics tpateximates an SJF-like schedule, by
repeatedly preventing the first queued job from being slaifbus doubling trades off fairness for
performance and should be viewed as a property of the satredol the predictor (indeed, we've
shown that the more accurate predictions are, the betterethdts that doubling obtains). We
exploit this new understanding to avoid the aforementianadeoff by explicitly using a shortest
job backfilledfirst (SIBF) backfilling order. This leads directly to a penfiance improvement that
was previously incorrectly attributed to stunts like donglor randomizing user estimates. By
still preserving FCFS as the basis, we manage to enjoy batlasva fair scheduler that neverthe-
less backfills effectively. Applying this to EASYYcan nearly double the performance (up to 47%
reduction in average slowdown). We call this enhanced algorEASY* .

The third and final difficulty is related to the usability ofgprously suggested prediction algo-
rithms. These all suffer from at least one (and sometimgetihe following drawbacks: (1) they
require significant memory and complex data structureswue #e history of users, (2) they em-
ploy a complicated prediction algorithm (to the point ofrigepff-line), and (3) they pay the price
in terms of computational overheads for maintaining théonysand searching it [13, 30, 19, 20].
Here too our contribution is twofold: (1) showing that a vemnple predictor can do an excellent
job, and (2) explaining why. Indeed, the improvements of EAS EASY " reported above were

obtained by employing a very simple predictor that is botsyda implement and suffers almost
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no overheads: the average runtime of the two most recentisngted (and already terminated)
jobs by the same user. We have argued that our predictotessistems from the fact it focuses
onrecentjobs, in contrast to previous predictors that focusediamlar ones (in terms of various
job attributes). This claim is supported by our finding thettfprmance degradation is more or less
linearly proportional to the amount of past jobs upon whioé prediction is based, suggesting a
prediction window of only one or two jobs is optimal (Fig. 10)

Finally, note that while we focus on improving EASY, we hal®ashown our techniques can
be applied equally well to any other backfilling schedulardéed, our work has already inspired
researchers working on treNANOS grid to incorporate runtime predictions using techniques
described in this paper [21].) The reason we choose to fonUSASY is its popularity in pro-
duction systems, which may be attributed to the combinatf@monservative FCFS semantics with
improved utilization and performance. Since EASYessentially preserves these qualities, but
consistently outperforms its predecessor in terms of aogyupredictability, and performance, we

believe it has an honest chance to replace EASY as the detmfiguration of production systems.
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