
ABSTRACT

Byzantine Agreement is a paradigm for
problems of reliable consistency and
synchronization in distributed systems . This
paper is a survey of recent work on algorithms
and requirements for reaching Byzantine
Agreement . The name Byzantine is applied to this
work because no assumption is made about the
behavior of faulty components except to quantify
the maximum number of independent failures
handled . Thus algorithms for Byzantine Agreement
set a new standard for reliability and
availability of distributed systems in an
environment of potentially unreliable
components . While there are many open questions
and much implementation work still remains, the
materials surveyed here have established that
this standard can be met in an efficient and
economical way and that such standards should be
sought in all areas of distributed systems .

INTRODUCTION

"Reaching agreement in the presence of
faults" is the title of the paper by Pease,
Shostak, and Lamport that introduced a new
standard into the literature on reliable
distributed systems in the guise of a military
application: the problem of the Byzantine

generals . 19 Rather than speak of generals and
messengers here, we will abstract the essentials
of the problem and consider a network of n
processors capable of exchanging messages over
bidirectional links . The problem is for all of the
processors to agree on the contents (value) of a
message being sent by one of them. It becomes an
interesting problem in an environment containing
potentially faulty processors or links . The term
Byzantine (coined by Leslie Lamport) is applied
to the problem when we make no assumption about
the behavior of faulty components . Thus an
algorithm for reaching Byzantine agreement must
cope with processors or links-that could fail to
relay a message as intended or even lie about its
contents .

Current address :
D . Dolev
Hebrew University, Givat Ram
91904 Jerusalem, Israel

CH1856-4183/0000-0077$1 .00 © 1983 IEEE

BYZANTINE AGREEMENT

by H . R . Strong and D . Dolev

IBM Research Laboratory, K55/281
San Jose, CA 95193

77

Byzantine Agreement results when, in the
presence of undetected faulty, processors, all
correct (non-faulty) processors are able to agree
either on a value or on the conclusion that the
originator of the value is faulty . More
explicitly, Byzantine Agreement is achieved
when
(I) all correct processors agree on the same
value, and
(II) if the sender is correct, then all correct
processors agree on its value .

Implicit in (I) and (II) is the idea that
there must be some time by which each of the
processors has completed the execution of its
algorithm for reaching agreement, and that this
time must be known by all processors .

A typical algorithm for reaching Byzantine
Agreement is parameterized by the number t of
faulty components that it can handle . It will
guarantee that processors following it will reach
Byzantine Agreement provided the number of faulty
components in the network does not exceed t . This
parameter is a convenient measure of the
reliability of the algorithm, so we will refer to
such an algorithm as having reliability t .

The original military application (Byzantine

Generals Problem) 17 is an example of an
application of Byzantine Agreement to distributed
synchronization : in the presence of suspected
traitors, the generals must exchange messages in
order to agree on a time to attack . The
commanding general is to send the time to all ;
but the commander may be a traitor and send
different times to different generals . The
survival of the loyal generals depends on their
ability to reach agreement on some time to attack
(not necessarily that supplied by the commander)
or on withdrawal if the commander is found to be a
traitor . The application generalizes to any set
of processes that must agree on a time to perform
some synchronous action. One of the processes is
coordinator and will decide the time ; but it may
be faulty, so a default time is prearranged for
this case .

Other applications such as preserving the
consistency of replicated data have no particular
synchrony constraint . Suppose we are working in a
distributed environment without distributed
transaction processing. We may require a
Byzantine Agreement in order to guarantee that

i

some replicated catalog will reach eventual
consistency at all sites in spite of an
unreliable communication medium .

A combination of consistency and
sychronization is provided by the application of
Byzantine Agreement algorithms to produce an
algorithm for

	

a nonblocking distributed

transaction commit . 9 In a typical two phase
distributed commit, a process must remain in a
blocking state, holding resources locked between
the time that it tells the transaction
coordinator that it is prepared to commit and the
time that it receives a commit or abort message
from the coordinator, even if the coordinator
crashes . Moreover, database consistency may not
be preserved if the coordinator becomes confused
and sends a commit message to some and an abort
message to others . In "Distributed commit with
bounded waiting," the authors show how use
Byzantine Agreement to overcome such coordinator
confusion and to commit or abort within a fixed
time after entering the prepared state . Database
consistency will be preserved provided the number
of faults does not exceed the reliability of the
agreement algorithm .

Algorithms for Byzantine Agreement are
currently being implemented in the prototype for
the Highly Available Systems project at IBM San
Jose Research Laboratory .

In the following sections we will discuss a
simple model for Byzantine Agreement that
facilitates its study, known resource
requirements for reaching Byzantine Agreement
including lower bounds on time and upper bounds
on reliability, algorithms that give the best
known performance in a variety of contexts, known
tradeoffs between time and messages, and
generalizations .

A PHASE MODEL FOR BYZANTINE AGREEMENT

We assume
(1) perfect communication : . a

	

completely
connected network with absolutely reliable links,
(2) exact synchronization: one clock shared by
all processors, partitioning time into discrete
phases, each longer than the longest delay due to
message transmission and processing, and
(3) authentication : a message protocol involving
unforgeable signatures that prevents

	

one
processor from lying about the contents of a
message it received from another . $

In a typical authentication protocol 19 , the
transmitter appends a signature to the message to
be sent . This signature contains a sample portion
of the message encoded in such a way that any
receiver can verify that the message is authentic
and that it was sent by the sender, but no
processor can forge the signature of another .
Thus no processor can change the content of a
message undetectably .

78

In subsequent sections we will discuss the
weakening of each of these assumptions, but
making them simplifies the isolation of the
Byzantine Agreement problem from problems of
connectivity and clock synchronization .

In describing the message behavior of our
network of processors, we will assume that the
phases are numbered and that the sender begins
sending its value according to its algorithm
during phase 1 . We assume
(4) known initial conditions : each processor knows
the identity of the sender and of the other
participants and the beginning time of phase 1 .

REQUIREMENTS FOR BYZANTINE AGREEMENT

In their original paper, Pease, Shostak, and
Lamport showed that, without authentication, n
processor Byzantine Agreement could only be

achieved with reliability less than one-third n . 19

For reliability t with n>3t, they provided an
algorithm that achieved Byzantine Agreement after

t+l phases and required O(nt+l) messages . With
authentication, they provided an algorithm with

the same performance (t+1 phases, O(nt+l)

messages) for any reliability . Subsequently,
Fischer and Lynch showed that without
authentication, t+1 was a lower bound on the

number of phases required' in the worst case . 12 A
general proof (with or without authentication) of
the t+1 worst case lower bound was found by Dolev

and Strong7,8 and independently by DeMillo,

Lynch, and Merritt . I Moreover, Fischer and
Lamport have shown that this result holds even in
a restricted model in which the only way a

processor can fail is to stop sending messages . 11

Thus t faulty processors can force n processors
to take t+1 phases to reach agreement simply by
ceasing to function at inopportune times .

A natural question that arises here concerns
the case of an algorithm with reliability t
handling fewer than t faults : How soon can the
processors reach agreement in case there are only
f actual faults? In order to answer this
question, it is necessary to make explicit what
it means to finish or stop the algorithm . We say
that a processor has stopped when it has decided
upon a value (for agreement) and will do no
further processing or relaying of messages
pertaining to this agreement . When a processor
has stopped with respect to a particular
agreement, it could cut all its communication
links without affecting the outcome of the
agreement for other processors or for itself . If
all correct processors reach agreement and stop
during the same phase, we say the agreement is
immediate . Otherwise, the agreement is eventual .
The original algorithms provided by Pease,
Shostak, and Lamport were algorithms for reaching
Immediate Byzantine Agreement : all processors
stopped after t+l phases and no processor could

stop any earlier . Note that since the agreement
reached by these algorithms is always immediate,
each processor is provided with the additional
knowledge of when each other correct processor
will stop . Otherwise, a processor might know only
that eventually the other correct processors
would agree with its choice of value, but it
might not know when the agreement would be
universal .

In the context of Immediate Byzantine
Agreement algorithms, the worst case lower bound
turns out to be general . Dolev, Reiscluk, and
Strong show that, for any f and t, any Byzantine
Agreement algorithm with reliability t that
reaches immediate agreement whenever there are

f actual faults requires at least t+1 phases . 6
However, for Eventual Byzantine Agreement, the

lower bound is only min(f+2,t+1), 10

Dolev and Reischuk have shown that there are
tradeoffs between the number of phases required
and the number of messages required by a
Byzantine Agreement algorithm . 5 A quick summary
of their lower bound results shows that any n
processor Byzantine Agreement algorithm with
reliability t must in the worst case require the
exchange of (n-t)(t+1)/4 messages without
authentication or (n-t)(t+l)/4 signatures with
authentication . Thus any Byzantine Agreement
requires 0(ntlog(n)) bits of information exchange
in the worst case . This bound is a far cry from

the upper bound O(nt+l) provided by the original
algorithms . In the next section we will discuss
some of the best algorithms known and narrow the
distance considerably between upper and lower
bounds on the number of messages .

OPTIMAL ALGORITHMS FOR BYZANTINE AGREEMENT

An important, though often overlooked,
measure of goodness of an algorithm is
simplicity . The simplest good algorithm for
Byzantine Agreement with reliability t is optimal
with respect to time for immediate agreement (t+l

phases) . Though its 0(n 2) message requirement is
not optimal, we discuss it here because it
establishes the feasibility of actually
implementing algorithms for Byzantine Agreement
with reliability greater than 1 . The algorithm
appears in "Authenticated algorithms

	

for

Byzantine Agreement ." 8 In most applications
(those not concerned with deliberate sabotage)
its required authentication algorithm may be
replaced by error detection .

in phase 1 of this algorithm, the sender
signs and sends its value to all participants .

Every processor is then to wait for receipt of
messages . If during phase k, a processor
receives a message containing value v and signed
by k distinct processors (beginning with the
sender), then the receiver is to insert v into an

79

ordered set (no duplicates) of committed values,
and if k<t+1 and v is a new value and one of the
first two, then the receiver is to sign and send
this message to ail participants during phase
k+1 .

After phase tt1, if a processor has exactly
one value committed, then that is the value of the
agreement; otherwise, it agrees on the default
value representing sender fault .

It is fairly easy to show that, provided
there are no more than t faulty processors, the
first two values committed by any correct
processor (if they exist) are committed by every
correct processor . Thus, if any correct processor
agrees on other than the default value, then all
correct processors do . However, if the sender is
correct then each correct processor commits its
value during phase 1 and no other value will ever
be committed because no other value will ever
have the sender's unforgeable signature .

Since each processor sends at most 2n
messages, the worst case number of messages

required by this algorithm is at most 2n2 .

The best published algorithm for Immediate
Byzantine Agreement using authentication and time
optimal (t+l phases) requires O(nt) messages in
the worst case, so upper and lower bounds are

tight to within a constant multiple . 8 Most
important is the fact that there exist algorithms
requiring a number of messages that is a small
polynomial in n and t . This establishes the
feasibility of implementing Byzantine Agreement
algorithms with high reliability . Using
authentication, the reliability can be as high as
the number of participants (though of course if
all processors are faulty the agreement is
vacuous) .

Without authentication, the results are more
varied and the algorithms and proofs of
correctness are not nearly as simple . For very
large n (compared to t) the lower and upper
bounds on the number of phases required (keeping
the number of messages polynomial in both n and
t) coincide (t+l for immediate agreement,

min(f+2,t+l) for eventual agreement) . 6 For n
close to the lower bound of 3t+l, the best known
upper bound on the number of phases required with
a polynomial number of messages is 2t+3 for
immediate or min(2f+5,2t+3) for

	

eventual

agreement . 4 ' 6 Thus there is a gap between upper
and lower bounds for small n : Reischuk has closed
the gap for n>20t but with a rather large

polynomial number of messages . 20

OTHER MODELS AND GENERALIZATIONS

Other related notions of agreement that
either weaken the kind of agreement required

(e .g . Dolev2) or strengthen the assumptions made

about the behavior of faulty processors (e .g .
Lamport 14) have been studied . Here we will
restrict attention to studies involving weakening
the fairly restrictive assumptions of our phase
model .

(1) Perfect communication

Dolev has shown that in order to achieve
Byzantine Agreement with reliability t, the
connectivity of the network must be at least t+l
with

	

authentication

	

or

	

2t+l

	

without
authentication . 3 Note that this connectivity is
measured in terms of potentially unreliable
links, while reliability is measured in terms of
failed components including either links or
processors . Lamport, Shostak, and Pease showed
that t+l connectivity was sufficient using an
exponential number of messages . 17 Dolev and
Strong provide an algorithm for Byzantine
Agreement with reliability t on a t+l connected
network with e edges that requires 0(e) messages
and t+d phases, where d is the maximum (over all
pairs of processors) of the minimum (over all
sets of t+l node disjoint paths between the pair)
of the maximum length in links of the set . 8

To allow links as well as processors to fail,
and to provide the hope of eventually detecting
faulty processors and correcting any damage they
cause locally by failing to agree with others,
some change must be made in the definition of a
correct processor (to account for the otherwise
correct processor that is isolated by incorrect
links) . Such a change was suggested by Dolev and
Strong when they proposed their application of
Byzantine Agreement to distributed transaction
commit . 9 There they suggest a conservative
algorithm by means of which a processor can
decide when it has become too isolated to
participate in Byzantine Agreements . They also
suggest a method of counting component failures
to reach an equivalent number of processor
failures in order to apply the theory developed
for the model with perfect communication . Most
algorithms designed for the perfect
communication model will have the same reliability
measured in component failures tolerated on a
sufficiently connected network with potentially
unreliable links .

(2) Exact synchronization

Assuming a bound on the rate of drift of
clocks, Dolev and Strong provide an asynchronous
algorithm for Byzantine Agreement based on work
of Lamport . 9,15 One can imagine using periodic
Byzantine Agreements to synchronize clocks to
within the tolerance required . Alternatively,
Lamport and Melliar-Smith provide algorithms
directly suited to such synchronization . 16 The
problem seems not to require as strong an
agreement as the Byzantine Agreement and further
work in the area is likely . A significant
byproduct of Dolev and Strong's contruction is

80

that phases are no longer discrete but rather
nested and message activity need not wait -to-
march in lock step with worst case times .

(3) Authentication

We have discussed alternatives to
authentication in the previous sections . One
interesting open question concerns whether
authentication actually helps in any way other
than allowing the reliability to exceed one-third
of the number of processors .

(4) Known initial conditions

At the cost of carrying additional
information along with the value, initial
conditions need not be known : The initial message
can carry an agreement identifier, a time of
generation, and even a list of participants, as
well as the value and signature . If these are
authenticated, then no other information is
needed as long as the default value has a meaning
in the application that requires no action . If
the default requires an action (e .g . abort
transaction) then the starting time for the
agreement must be bounded independent of receipt
of any message of the agreement algorithm .

SUMMARY

We summarize here the key results on
algorithms for Byzantine Agreement . These results
were obtained within the phase model but apply,
when suitably interpreted, to the more realistic
model with weakened restrictions discussed in the
previous section . Recall that in the model, n is
the number of processors, t is the reliability of
the algorithm, and f is the number of actual
faults . We use the abbreviations IBA for
Immediate Byzantine Agreement and E BA for
Eventual Byzantine Agreement .

Without authentication, BA can only be reached
when n>3t . 19

IBA requires at least t+1 phases .6

E BA requires at least min(f+2,t+1) phases . 10

BA requires the exchange of 0(ntlog(n)) bits of

information .5

Using authentication, IBA can be achieved in t+1
phases with the exchange of O(ntiog(n)) bits . 8

For n>>t IBA can be achieved in t+1 phases with
the exchange of O(nt3log(n)) bits .6

For n>3t IBA can be achieved in 2t+3 phases with
the exchange of O(nt3log(n)) bits .4

For n>>t EBA can be achieved in min(f+2,t+1)
phases with the exchange of O(nt3 log(n)) bits . 6

For n>3t EBA can be achieved in min(2f+5,2t+3)

phases with the exchange of O(nt3log(n)) bits .6

We call an agreement algorithm feasible if it
requires an amount of information exchange
measured in bits that is a small polynomial in
both n and t . Tradeoffs have been established
between the number of phases and the amount of

information exchange required5 but there is still
a large gap between known upper and lower bounds
on the number of phases required by feasible
algorithms for BA with high reliability .
Moreover, it has not been established whether
authentication helps in any way other than to
allow reliability to exceed one-third n .

What has been established is that there do
exist feasible algorithms for Byzantine
Agreement . The standard that they set for
reliability offers a valuable model for reliable
distributed systems .

REFERENCES

A. DeMillo, N . A . Lynch, and M . Merritt,
"Cryptographic Protocols,"
proceedings, the 14th ACM SIGACT
Symposium on Theory of Computing, May,
1982 .

[2] D . Dolev, "The Byzantine Generals Strike
Again," Journal of Algorithms, vol . 3,
no . 1, pp. 14-30, 1982 .

[3] D . Dolev, "Unanimity in an Unknown and
Unreliable Environment," 22nd Annual
Symposium on Foundations of Computer
Science, pp . 159-168, 1981 .

[4] D . Dolev, M . Fischer, R . Fowler, N . Lynch,
and R . Strong, "Efficient Byzantine
Agreement Without Authentication,"
Information and Control, to appear . See
also IBM Research Report RJ3428 (1982) .

D . Dolev and R . Reischuk, "Bounds on
Information Exchange for Byzantine
Agreement," Proceedings, ACM
SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, Ottawa, Aug .
1982 . See also IBM Research Report
RJ3587 (Sep . 1982) .

[6] D . Dolev, R . Reischuk, and H . R . Strong,
"'Eventual' Is Earlier then
'Immediate'," 23rd Annual Symposium on
Foundations of Computer Science, 1982 .
See also IBM Research Report RJ3632
(Oct . 1982) .

D . Dolev and H . R. Strong, "Polynomial
algorithms for multiple processor
agreement," proceedings, the 14th ACM
SIGACT Symposium on Theory of Computing,
May 1982 . See also IBM Research Report
RJ3342 (1981) .

[8] D . Dolev and H . R. Strong, "Authenticated
Algorithms for Byzantine Agreement,"
Siam Journal on Computing, to appear .
See also IBM Research Report RJ3416
(1982) .

[5)

[7]

81

[9] D . Dolev and H . R . Strong, "Distributed
Commit with Bounded Waiting,"
Proceedings, Second Symposium on
Reliability in Distributed Software and
Database Systems, Pittsburgh, July
1982 . See also IBM Research Report
RJ3417 (1982) .

[10] D . Dolev and H . R. Strong, "Requirements
for Agreement in a Distributed System,"
Proceedings, the Second International

Symposium on Distributed Data Bases,
Berlin, Sep . 1982 . See also IBM
Research Report RJ3418 (1982) .

[11] M. Fischer and L . Lamport, private
communication of paper in preparation,
April, 1982 .

[12] M. Fischer and N . Lynch, "A Lower Bound for
the Time to Assure Interactive
Consistency," Information Processing
Letters, 14(4), pp . 183-186, 1982 .

[13] M. Fischer, N . Lynch, and M. Paterson,
Impossibility of Distributed Consensus
with One Faulty Process, unpublished
manuscript, Aug ., 1982 .

[14] L. Lamport, "The Weak Byzantine Generals
Problem," JACM, to appear .

[15] L . Lamport, "Using Time Instead of Timeout
for Fault-Tolerant Distributed
Systems," Technical Report, Computer
Science Laboratory, SRI International,
June 1981 .

[16] L . Lamport, and P . M . Melliar-Smith,
"Synchronizing Clocks in the Presence of
Faults," Technical Report, Computer
Science Laboratory, SRI International,
March '1982 .

[17] L . Lamport, R . Shostak, and M . Pease, "The
Byzantine Generals Problem," ACM Trans .
on Programing Languages and Systems, to
appear .

[18] N . Lynch, M . Fischer, and R . Fowler, "A
Simple and Efficient Byzantine Generals
Algorithm," Proceedings, Second
Symposium on Reliability in Distributed
Software and Database Systems,
Pittsburgh, July 1982 .

[19] M. Pease, R. Shostak, and L . Lamport,
"Reaching Agreement in the Presence of
Faults", JACM, vol . 27, no . 2, pp .
228-234, 1980 .

[20] R. Reischuk,"A New Solution for the
Byzantine Generals Problem", in
preparation .

	page 1
	page 2
	page 3
	page 4
	page 5

