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Abstract. Bottom-up segmentation based only on low-level cues is@ritoisly
difficult problem. This difficulty has lead to recent top-dowegmentation algo-
rithms that are based on class-specific image informatiespide the success of
top-down algorithms, they often give coarse segmentatibascan be signifi-
cantly refined using low-level cues. This raises the questichow to combine
both top-down and bottom-up cues in a principled manner.

In this paper we approach this problem using supervisedilegrGiven a train-
ing set of ground truth segmentations we train a fragmesetaegmentation
algorithmwhich takes into account both bottom-up and top-down cumesl&ne-
ously, in contrast to most existing algorithms which train topvdaand bottom-up
modules separately. We formulate the problem in the framlewbConditional
Random Fields (CRF) and derive a feature induction algaritbr CRF, which
allows us to efficiently search over thousands of candidatgnfients. Whereas
pure top-down algorithms often require hundreds of

fragments, our simultaneous learning procedure yieldsriilgms with a handful
of fragments that are combined with low-level cues to effitiecompute high
quality segmentations.

1 Introduction

Figure 1 (replotted from [2]) illustrates the importancecmimbining top-down and
bottom-up segmentation. The leftmost image shows an imbhgéorse and the mid-
dle column show three possible segmentations based onlgvetelel cues. Even a
sophisticated bottom-up segmentation algorithm (e.g.16p has difficulties correctly
segmenting this image.

The difficulty in pure low-level segmentation has led to trevelopment of top-
down, class-specific segmentation algorithms [3, 11, 2R Titese algorithms fit a de-
formable model of a known object (e.g. a horse) to the imalye shape of the deformed
model gives an estimate of the desired segmentation. Thehiand column of figure 1
shows a top-down segmentation of the horse figure obtainéugsigorithm of [3]. In
this algorithm, image fragments from horses in a trainingdase are correlated with
the novel image. By combining together the segmentatiotiseofragments, the novel
image is segmented. As can be seen, the top-down segmaeritabetter than any of
the bottom-up segmentations but still misses importargildet
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Fig. 1. The relative merits of the bottom-up and the top-down apgres, replotted from [2].
(a) Input image. (b) The bottom-up hierarchical segmematit three different scales. (¢) The
top-down approach provides a meaningful approximatiortHerfigureground segmentation of
the image, but may not follow exactly image discontinuities

In recent years, several authors have therefore suggesteirting top-down and
bottom-up segmentation [2,21, 17, 6]. Borenstein et alcf@Jose among a discrete set
of possible low-level segmentations by minimizing a cosichion that includes a bias
towards the top-down segmentation. In thrage parsingramework of Tu et al. [17]
object-specific detectors serve as a proposal distribfitioa data-driven Monte-Carlo
sampling over possible segmentations. In@&]-CUTalgorithm [6] a layered pictorial
structure is used to define a bias term for a graph-cuts emeirgynization algorithm
(the energy favors segmentation boundaries occurringagéndiscontinuities).

These recent approaches indeed improve the quality of thie\asd segmenta-
tions by combining top-down and bottom-up cues at run-tirh@wvever, the training
of the bottom-up and top-down modules is perfornmedependentlyln the work of
Borenstein and colleagues, training the top-down modulesists of choosing a set
of fragments from a huge set of possible image fragments ffaining is performed
without taking into account low-level cuds the image parsing framework [17], the
top-down module are object detectors trained using AdaBtmosaximize detection
performance. Again, this training is performed withoutitgkinto account low-level
cues. In the OBJ-CUT algorithm, the training of the algamtis based on a set of
learned layered pictorial structures [6]. These learnedetsoare then used to define a
detection cascade (which calculates putative part loeatiy comparing the image to
a small number of templates) and a bounding box for the velgtrt locations. Again,
the choice of which templates to apply to a given images ifopmed independent of
the low-level segmentation cues.

Figure 2(a) shows a potential disadvantage of training dpediown model while
ignoring low-level cues. Suppose we wish to train a segntiemtalgorithm for oc-
topi. Since octopi have 8 tentacles and each tentacle hagplawegrees of freedom,
any top-down algorithm would require a very complex defdstagemplate to achieve
reasonable performance. Consider for example the top-@bgorithm of Borenstein
and Ullman [3] which tries to cover the segmentations in thtaset with a subset of
image fragments. It would obviously require a huge numbdragiments to achieve
reasonable performance. Similarly, the layered pictatialcture algorithm of Kumar
et al. [6] would require a large number of parts and a commtanodel for modeling
the allowed spatial configurations.
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Fig. 2. (a) Octopi: Combining low-level information can signifitgnreduce the required com-
plexity of a deformable model. (b) Examples from horsesitrgj data. Each training image is
provided with its segmentation mask.

While Octopi can appear in a large number of poses, theirléwet segmentation
can be easy since their color is relatively uniform and (aejpgg on the scene) may
be distinct from the background. Thus an algorithm thangadhe top-down module
while taking into account the low-level cues can choose twtiefar less resources
to the deformable templates. The challenge is to providereipied framework for
simultaneous training of the top-down and bottom-up segatiem algorithms.

In this paper we provide such a framework. The algorithm weppse is simi-
lar at run-timeto the OBJ-CUT and the Borenstein et al. algorithms. Astitated in
figure 3, at run-time a novel image is scanned with an objeietatier which tries all
possible subimages until it finds a subimage that is likelyotatain the object (for most
of the databases in this paper the approximate location wask so no scanning was
performed). Within that subimage we search for object gartserforming normalized
correlation with a set of fragments (each fragment scang amlortion of the subim-
age where it is likely to occur thus modeling the spatialriatdon between fragment
locations). The location of a fragment gives rise to a lodas berm for an energy func-
tion. In addition to the local bias, the energy function resdgasegmentation boundaries
occurring at image discontinuities. The final segmentaisoobtained by finding the
global minimum of the energy function.

While our algorithm is similar at run-time to existing segmtegion algorithms, the
training method is unique in that gimultaneously takes into account low-level and
high-level cuesWe show that this problem can be formulated in the conteXdai-
ditional Random Fields [8, 7] which leads to a convex costfiom for simultaneous
training of both the low-level and the high-level segmeniée use the CRFs formula-
tion to derive a novel fragment selection algorithm, whittbvas us to efficiently learn
models with a small number of fragments. Whereas pure teynddgorithms often
require hundreds of fragments, our simultaneous learniaggalure yields algorithms
with a handful of fragments that are combined with low-lemeés to efficiently com-
pute high quality segmentations.
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Fig. 3. System overview: (a) Detection algorithm applied to an tipiage (b) Fragments search
range, dots indicate location of maximal normalized catieh (c) Fragments local evidence,
overlaid with ground truth contour (d) Resulting segmeéatatontour

2 Segmentation using Conditional Random Fields

Given an imagd, we define the energy of a binary segmentation mag:

E(z;1) :VZwiﬂx(i)—x(j)|+Z/\k|x—$Fk,I| 1)
i k

This energy is a combination of a pairwise low-level term arldcal class-dependent
term.

The low level term is defined via a set of affinity weighi$i, j). w(i, j) are high
when the pixelgi, j) are similar and decrease to zero when they are differenileédim
ity can be defined using various cues including intensitiprcéexture and motion as
used for bottom up image segmentation [12]. Thus minimi2ing; w;; |z (i) — z(j)|
means that labeling discontinuities are cheaper when theglayned with the image
discontinuities. In this paper we used 8-neighbors cotivigctand we set:

1
5= T o

whered;; is the RG B difference between pixelsand;j ando = 5 - 10%.

The second part of eq 1 encodes the local bias, defined as afdocabenergy
terms each weighted by a weight. Following the terminology of Conditional Random
Fields, we call each such local energy term a feature. Invtbik, these local energy
terms are derived from image fragments with thresholds.aloutate the energy of a
segmentation, we shift the fragment over a small window (%8I in each direction)
around its location in its original image. We select the taain which the normalized
correlation between the fragment and the new image is maxXsgea Fig 3(b)). The
feature is added to the energy, if this normalized correteis large than a threshold.
Each fragment is associated with a mask fragmenextracted from the training set
(Fig 9 shows some fragments examples). We denote hy the fragment mask
placed over the imagE according to the maximal normalized correlation locatieor
each fragment we add a term to the energy function which peasdior the number of



pixels for whichz is differentfrom the fragmentmask- 7, [z—xr 1| =, p (i)~
zp,1(7)|. Wherei € F means the pixelis covered by the fragmeift after the fragment
was moved to the maximal normalized correlation locati@e (Sig 3(c)).

Our goal in this paper is to learn a set of fragmef#; }, thresholds and weights
{A\x}, v that will favor the true segmentation. In the training stalge algorithm is
provided a set of imaged; }:—1.7 and their binary segmentation masgks }+—1.7, as
in figure 2(b). The algorithm needs to select features angmeisuch that minimizing
the energy with the learned parameters will provide therddsegmentation.

2.1 Conditional Random Fields

Using the energy (eq. 1) we define the likelihood of the labetonditioned on the
imagel as
1

—E(x;1) . _ —E(x;I)
70" where: Z(I)_Z:e

P(z|I) =
Thatis,z forms a Conditional Random Field (CRF) [8]. The goal of trerféng process
is to select a set of fragmen{#’, }, thresholds and weighfs\; }, v that will maximize

the sum of the log-likelihood over training examplésy, v; F) = 3, ¢4(X, v; F)
ét(j\:y;ﬁ) = logp(xt|1f75"a V7ﬁ) = _E(xt;It;X7Vaﬁ) —IOgZ(I“X, V7ﬁ) (2)

The idea of the CRF log likelihood is to select parameterswhlimaximize the like-
lihood of the ground truth segmentation for training exa@spBuch parameters should
minimize the energy of the true segmentatiapswhile maximizing the energy of all
other configurations.

The CRF formulation has proven useful in many vision appilice [7, 15, 14, 4, 5].
Below we review several properties of the CRF log likelihood

1. For a given features sét = [F1, ..., Fk], if there exists a parameter SBt =
[AY, .., M%), v* for which the minimum of the energy function is exactly theetr
segmentationz; = argmin, E(x; I;, \*,v*, F). Then selectingxX*, ar* with
o — oo will maximize the CRF likelihood, since?(z;|I;; aX*, av*, F) = 1 (see
[10)).

2. The CRF log likelihood isonvexwith respect to the weighting parametays v as
discussed in [8].

3. The derivative of the log-likelihood with respect to theefficient of a given fea-
ture is known to be the difference between the expectedrieatisponse, and the
observed one. This can be expressed in a simple closed foyrasva

(N, v;F)  dlog P(x:|I; N, v, F)
N, O,

= 3 S n)lr - wpn @) = Y J#i(0) — wr )

i€F T 1€ Fy

=< |J3t —ka7[t| >P(-’Et‘1t§x7u7ﬁ) — < |J3t —xpk7[t| >0bs (3)



(N, v; F)  dlog P(xi|Iy; N, v, F)
ov n ov

= ZZP@(“ s)wij|r — s| — Zwiﬂxt(i) —z1(J)]

ij s

=< |J?f(l) - It(])| >P(w¢|1¢;x,u,ﬁ) - < |.13f(l) - .23f(j)| >o(,s(4)

Wherep;(r), pi; (r, s) are the marginal probabilitieB(x; = r|I; v, F)P(x; =
T, T = s|It;X, v, ﬁ)

Suppose we are given a set of featufés= [F1,...Fk] and the algorithm task
is to select weight§ = [A\1,.., Ak], v that will maximize the CRF log likelihood.
Given that the cost is convex with respectov it is possible to randomly initialize
the weights vector and run gradient decent, when the gredame computed using
equations 3,4. Note that gradient decent can be used fatisgl¢he optimal weights,
without computing the explicit CRF log likelihood (eq 2).

Exact computation of the derivatives is intractable, du¢hw difficulty in com-
puting the marginal probabilities;(r), pi; (r, s). However, any approximate method
for estimating marginal probabilities can be used. One @gugh for approximating the
marginal probabilities is using Monte Carlo sampling, likd4, 1]. An alternative ap-
proach is to approximate the marginal probabilities usimg beliefs output of sum
product belief propagation or generalized belief propagaSimilarly, an exact com-
putation of the CRF log likelihood (eq 2) is challenging da¢hte need to compute the
log-partition functionz(I) = [, e~ (=), Exact computation of (1) is in general in-
tractable (except for tree structured graphs). Howeven@apmate inference methods
can be used here as well, such as the Bethe free energy or khehKiapproxima-
tions [20]. Monte-Carlo methods can also be used. In thikwar have approximated
the marginal probabilities and the partition function gséum product tree-reweighted
belief propagation [18], which provides a rigorous boundtenpartition function, and
has better convergence properties than standard beliphgadion. Tree reweighted
belief propagation is described in the Appendix.

2.2 Features Selection

The learning algorithm starts with a large pool of candidatal features.

In this work we created 3, 000 features pool, by extracting image fragments from
training images. Fragments are extracted at random sizésaaclom locations. The
learning goal is to select from the features pool a small stubs features that will
construct the energy functiafi, in a way that will maximize the conditional log likeli-
hood}, log P(z¢|1;). Since the goal is to select a small subset of features oubigf a
pool, the required learning algorithm for this applicatismore than a simple gradient
decent.

Let £y, denote the energy function at théh iteration. The algorithm initialize&,
with the pairwise term and adds local features in an itegagreedy way, such that in
each iteration a single feature is addéti:(z; I) = Ex_1(x;I) + M\glz — xzp, 1]. In
each iteration we would like to add the featurg that will maximize the conditional



log likelihood. We denote by (F, \) the possible likelihood if the featur€, weighted
by ), is added at thé’th iteration:

Li(F,N) = (-1, A\, v; Fy_1, F) = > log P (z4|I;; Ex—1(ze; 1) + Mz — 5.1, ] )
t

Straightforward computation of the likelihood improvenismot practical since in
each iteration, it will require inference for each candédaiature and for every possible
weight A we may assign to this feature. For example, suppose we Haveining
images, we want to scah 000 features2 possibleX values, and we want to perform
10 features selection iterations. This result2j000, 000 inference operations. Given
that each inference operation itself is not a cheap protessesulting computation
can not be performed in a reasonable time. However, we stitfggdy using a first-
order approximation to the log likelihood, one can efficigtgarn a small number of
effective features. Similar ideas in other contexts hawenloposed by [23, 9, 13].

Observation: A first order approximation to the conditional log likelibd can be
computed efficiently, without a specific inference processgature.

Pr oof:
OLy(F,\)

Li(F, ) & le—1 (V—1,v) + A =05 (5)
A=0
where
OLL(F, )
T . = Z < |(L't — .’L’F’]t| >P(mt‘1t§xk—17l/7ﬁk—1) - < |5L't - .’L'F’[t| >0bs
= t

(6)
andlj,_y(\y_1,v) = >, log P(x|I; Ex—1). We note that computing the above first
order approximation requires a single inference proceslseprevious iteration energy
FEj_1, from which the local beliefs (approximated marginal probtes) {bf;l} are
computed. Since the gradient is evaluated at the poiat0, it can be computed using
the k — 1 iteration beliefs and there is no need for a specific infezgmocess per
feature(]

Computing the first order approximation for each of the irajnimages is linear
in the filter size. This enables scanning thousands of catalifatures within sev-
eral minutes. As evident from the gradient formula (eq 6) dedhonstrated in the
experiments section, the algorithm tends to select fragsnéivat: (1) have low er-
ror in the training set (since it attempts to minimize |z, — zp,1,| >obs) @and (2)
are not already accounted for by the existing model (sinat@&mpts to maximize
< |xt - xF’Ifl >P(1'tut§xk—17V7ﬁkfl)).

Once the first order approximations have been calculatedaweselect a small set
of the featuredy, ... Fi,, with the largest approximated likelihood gains. For each of
the selected features, and for each of a small discrete gevssible) values) €
{AY ..., AMY ) we run an inference process and evaluate the explicit tondl log
likelihood. The optimal feature (and scale) is selectedadutked to the energy function
E. The features selection steps are summarized in Algorithm 1

Once a number of features have been selected, we also optthezchoice of
weights{\;}, v using several gradient decent steps. Since the cost is xovitrere-
spect to the weights a local optimum is not an issue.



Algorithm 1: Features Selection
Initialization: Eo(z+; It) = v 32, wij|ze(i) — ze(5)]-
for k=1 to maxIitr

1. Run tree-reweighted belief propagation usingithel iteration energye,_1 (z:; I+). Com-
pute local belief{b; ;' }.

2. For each featur& compute the approximated likelihood using eq 5.
Select thelV featuresFy, ... Fi.,, with largest approximated likelihood gains.

3. For each of the featureBy, ...Fy,, and for each scala € {\', .., A"}, run tree-
reweighted belief propagation and compute the likelihdadFy,, , \™)

4. Select the feature and scale with maximal likelihood gain

(Fg,,\™) = arg max Ly(Fk,,\™)

n=1:N, m=1:M

Set\r =\, F = Fkn s Ek(x,f) = Ek_l(]};l) +)\k|l' _ka-,I|'

2.3 Bounding thelog-likelihood gain

Consider thek’'th feature selection iteration. In this iteration one isegi an energy
function E),_1 (z; I), and tests the option of adding the energy function a fedfilrg):

Ep(x; 1) = Ex_1(z; 1) + F(x; 1)

where we usé’(z;I) as a shortcut fon|x — zr r|. The new log-likelihood can be
expressed as:

Li(Fo\) = lg—1 + Z —In < e Fleul) > P i (@) — < F(x; It) >0bs
t

The above formula i®exact and is easily derived from the fact that i (z) =
Zile*El(f” andPy(z) = Zige*Eﬂf‘), then the ratio of partition functions i&, /7, =<
FE1—E>

e >p-

This is closely related to the first-order approximationsésing thatf” is closely
concentrated around its mean value (e.g. at small tempegtane can replace the
expectation and the lodgn < e~ >~< —F >, and get the familiar first order ap-
proximation:

Ly(F,A) = le—1 + Z < F(xe;1i) >y (we,1) — < F@e; i) >0bs
t

A second result is that the first-order approximation isgorous upper boundn the
log-likelihood:
—In<e ¥ >p < <F>p .

This follows from Jensen’s inequality and can also be pralissctly from the convex-
ity of the log likelihood. Since the first order approximatis an upper bound, we know
that we do not have to consider fragments whose first ordeoappation is small, as
such fragments must have smaller likelihood gain.



3 Experiments

In our first experiment we tried to segment a synthetic octogiataset. Few sample
images are shown in Fig 4. It's clear that our synthetic actop highly non rigid
objects. Any effort to fully cover all the octopi tentaclegttwfragments (like [2, 11,
6]), will require a huge number of different fragments. Oa tither hand, there is a lot
of edges information in the images that can guide the segtient The first feature
selected by our algorithm is located on the octopi head, isi@ rigid part common
to all examples. This single feature, combined with paiexisnstraints was enough to
propagate the true segmentation to the entire image. The 8&4entation given the
selected feature is shown in Fig 4.

We then tested our algorithm on three real datasets, of §d&&], cars and
cows [11]. We measured the percentage of mislabeled pixelsei segmented images
on training and testing images, as more fragments are léafin@se are shown for the
horses in Fig 5(a), for the cars in Fig 5(b), and for the cowBign5(c). Note that after
selecting 3 fragments our algorithm performs at over 95%ewbon test data for the
horse dataset. The algorithm of Borenstein et al. [2] peréat at95% for pixels in
which its confidence was overl and at66% for the rest of the pixels. Thus our overall
performance seems comparable (if not better) even thouglsee far less fragments.
The OBJ-CUT algorithm also performs at around 96% for a dulifgbis dataset using
a LPS model of 10 parts whose likelihood function takes irdnsideration chamfer
distance and texture and is therefore significantly moreptexthan normalized cor-
relation.

In the horses, cars and cows experiments we rely on the facwi are searching
for a shape in the center of the window, and used an additlooal feature predicting
that the pixels lying on the boundary of the subimage shoeldbeled as background.

In Fig 6 we present several testing images of horses, thengriouth segmentation,
the local features responses and the inferred segmentdtlute low level information
adds a lot of power to the segmentation process, it can alsidheading. For example,
the image on the right of Fig 10 demonstrates the weaknehg & level information.

In Fig 7 we present segmentation results on cars test imbmyes) energy function
consisting of 2 features, and in Fig 8 we present segmentagisults on cows test
images, for an energy function consisting of 4 features. §¢mmentation in the cows
case is not as good as in the horses’ case, especially inghelée note that in most of
these examples the legs are in a different color than the caly, thence the low-level
information can not easily propagate labeling from the cadybto its legs. The low
level cue we use in the work is quite simple- based only on @8 Rifference between
neighboring pixels. It's possible that using more sopbigd edges detectors [12] will
enable a better propagation.

The first 3 horse fragments that were selected by the algo@tte shown in Fig 9.
In Fig 10 we illustrate the first 3 training iterations on s&ldraining images. Quite
a good segmentation can be obtained even when the respotisesilected features
does not cover the entire image. For example the first fragjmes located around
the horse’s front legs. As can be seen in the first 3 columndggflB, some images
can be segmented quite well based on this single local feaie can also see that
the algorithm tends to select new features in image areasvity@ mislabeled in the



previous iterations. For example, in several horses (mé#ir@ 3 middle columns) there
is still a problem in the upper part, and the algorithm theretelects a second feature in
the upper part of the horse. Once the second fragment wasl Huele are still several
mislabeled head areas (see the 3 right columns), and as latres3rd fragment is
located on the horse head.
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Fig. 4. Results on synthetic octopus data. Top: Input images. Middksponse of the local feature,
with the ground truth segmentation contour overlaid in Battom: MAP segmentation contour
overlaid on input image.

4 Discussion

Evidence from human vision suggests that humans utilizeifgégnt top-down infor-
mation when performing segmentation. Recent works in cderpision also suggest
that segmentation performance in difficult scenes is bgst@ehed by combining top-
down and bottom-up cues. In this paper we presented an thgothat learns how
to combine these two disparate sources of information irgmgle energy function.
We showed how to formulate the problem as that of estimatid®anditional Random
Fields. We used the CRF formulation to derive a novel fragreelection algorithm that
allowed us to efficiently search over thousands of imagenfiegs for a small number
of fragments that will improve the segmentation perfornear@ur learned algorithm
achieves state-of-the-art performance with a small nurobgagments combined with
very rudimentary low-level cues.

Both the top-down module and the bottom-up module that wd aae be signifi-
cantly improved. Our top-down module translates an imaggnfrent and searches for
the best normalized correlation, while other algorithmeoallow rescaling and rota-
tion of the parts and use more sophisticated image sinyilarétrics. Our bottom-up
module uses only local intensity as an affinity function kestw pixels, whereas other
algorithms have successfully used texture and contour #slwéact, one advantage
of the CRFs framework is that we can learn the relative wsiglitdifferent affinity
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Fig. 5. Percents of miss-classified pixels: (a) Horses data (b) @ates (c) Cows data. Note that
after 4 fragments our algorithm performs at over 95% coroectest data for the horse dataset.
These results are comparable if not better than [2, 6] wisilegia simpler model.

Fig. 6. Testing results on horses data. Top row: Input images. Semn Response of the local
features and the boundary feature, with the ground trutmsetation contour overlaid in red.
Bottom row: MAP segmentation contour overlaid on input imag

functions. We believe that by improving both the low-levetidnigh-level cues we will
obtain even better performance on the challenging task aj@segmentation.



Fig. 7. Testing results on cars data. Top row: Input images. SecmndResponse of the local
features and the boundary feature, with the ground trutmeatation contour overlaid in red.
Bottom row: MAP segmentation contour overlaid on input immag

Fig. 8. Testing results on cows’ data with 4 features. Top row: Inmages. Second row: Re-
sponse of the local features and the boundary feature, hétground truth segmentation contour
overlaid in red. Bottom row: MAP segmentation contour ogieflon input image.

e

Fig. 9. The first 3 horse fragments selected by the learning algorith

5 Appendix: Tree-reweighted Belief Propagation and
Tree-reweighted Upper Bound

In this section we summarize the basic formulas from [18Kioplying tree-rewighted
belief propagation and for computing the tree-rewightegaround.

For a given graplir, we letu, = {u.|e € E(G)} representa vector of edge appear-
ance probabilities. That ig,. is the probability that the edgeappears in a spanning tree
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Fig. 10. Training results on horses data. For each group: Top rowpores of the local features
and the boundary feature, with the ground truth segmemtatiatour overlaid in red. Middle row
- MAP segmentation. Bottom row - MAP segmentation contowartaid on input image.

of the graphG, chosen under a particular distribution on spanning trees2D-grid
graphs with 4-neighbors connectivity a reasonable chdiedges distributions ig, =
{ne = %le € E(G)} and for 8-neighbors connectivity, = {pe = 1|e € E(G)}.

The edge appearance probabilities are used for definingeardreighted mas-
sages passing scheme. Denote the graph potentialsligs;) = e P,
@i(zi,x;) = e Pul@im) and assumeP(r) can be factorized asP(r)

IT; i(2i) 1, ; ¥ij (@i, z;). The tree-rewighted massages passing scheme is defined as
follows:



1. Initialize the messages® = m?j with arbitrary positive real numbers.
2. Foriterations n=1,2,3,... update the messages as fllow

n N
[reron [mk'j (xj)]
/ )] (1—p54)

J

1
Mt (@) = 5 Y ep(— By (i 25) ~ B )
ij

’

[

”({E

wherer is a normalization factor such that, m7;(z;) = 1.
The process converges wi ';’1 = m7,; for everyij.

Once the process has converged, the messages can be usad portiog the local
and pairwise beliefs:

bi(zi) =k exp(—E;(x;)) H [ ()] 7

kel (i)

bij(ﬂfi,ﬂ?j) =R €$p(—#E¢j($z‘7$j) - E7(a:1) - Ej(xj))

Hij
e rang @)™ Tlee rgn g ()] 8)
[ ()] 1) [maj (z;)] )

We define a pseudo-marginals vectgr = {g¢;,¢;;} as a vector satisfying:
doe, @i(wi) = Land_, gij(zi,z;) = qi(z;). In particular, the beliefs vectors in
equations 7,8 are a pe§eudo-marginals vector. We use thaedmesmarginals vectors
for computing the tree-rewighted upper bound.

Denote by# the energy vectod = {E;, E;;}. We define an “average energy”
termasiq -0 = >, >, —ai(wi)Ei(w) + 3255 >0, 0, — i (@i, 2) By (w3, ;). We
define the single node entrop$f;(¢;) = —>_,. qi(z;) log g;(z;). Similarly, we de-
fine the mutual information betweehand j, measured undeg;; as: I;;(¢i;) =
> w @ij (i, 25) log i (%i,2;) . This is used to define a free en-

e (S assCona)) ) (g 005
ergy: F(q; te; 0) = — 32, Hiqs) + 22,5 tijlij(4ij) — G- 0.

In [18] Wainwright et al prove thaf (q; u..; #) provides an upper bound for the log
partition function:

log Z = /exp(—ZEi(xi) — ZEU(%JJJ)) < F(q; pe; 0)

ij

They also show that the free enerd¥(q; u.;0) is minimized using the peseudo-
marginals vectob defined using the tree-rewighted messages passing outyparefore
the tighter upper bound dng Z is provided byB.

This result follows the line of approximations to the log ftan function using
free energy functions. As stated in [20], when standarcebgliopagation converges,
the output beliefs vector is a stationary point of the betlee fenergy function, and
when generalized belief propagation converges, the obgligfs vector is a stationary
point of the Kikuchi free energy function. However, unlikeetbethe free energy and



Kikuchi approximations, the tree-rewighted free energgasvexwith respect to the
peseudo-marginals vector, and hence tree-rewighted Ipetipagation can not end in
a local minima.

A second useful property of using the tree-rewighted uppemnd as an approxi-
mation for the log partition function, is that computing thelihood derivatives (equa-
tions 3-4) using the beliefs output of tree-rewighted mgssgpassing, will result in
exactderivatives for the upper bound approximation.

In this paper we usea}'(B; Ue; 0) as an approximation for the log partition func-
tion, whereb is the output of tree-rewighted belief propagation. We alsed the tree-
rewighted beliefd in the derivatives computation (equations 3-4), as our@apra-
tion for the marginal probabilities.
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