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Abstract. Bottom-up segmentation based only on low-level cues is a notoriously
difficult problem. This difficulty has lead to recent top-down segmentation algo-
rithms that are based on class-specific image information. Despite the success of
top-down algorithms, they often give coarse segmentationsthat can be signifi-
cantly refined using low-level cues. This raises the question of how to combine
both top-down and bottom-up cues in a principled manner.
In this paper we approach this problem using supervised learning. Given a train-
ing set of ground truth segmentations we train a fragment-based segmentation
algorithmwhich takes into account both bottom-up and top-down cues simultane-
ously, in contrast to most existing algorithms which train top-down and bottom-up
modules separately. We formulate the problem in the framework of Conditional
Random Fields (CRF) and derive a feature induction algorithm for CRF, which
allows us to efficiently search over thousands of candidate fragments. Whereas
pure top-down algorithms often require hundreds of
fragments, our simultaneous learning procedure yields algorithms with a handful
of fragments that are combined with low-level cues to efficiently compute high
quality segmentations.

1 Introduction

Figure 1 (replotted from [2]) illustrates the importance ofcombining top-down and
bottom-up segmentation. The leftmost image shows an image of a horse and the mid-
dle column show three possible segmentations based only on low-level cues. Even a
sophisticated bottom-up segmentation algorithm (e.g. [12, 16]) has difficulties correctly
segmenting this image.

The difficulty in pure low-level segmentation has led to the development of top-
down, class-specific segmentation algorithms [3, 11, 22, 19]. These algorithms fit a de-
formable model of a known object (e.g. a horse) to the image - the shape of the deformed
model gives an estimate of the desired segmentation. The right-hand column of figure 1
shows a top-down segmentation of the horse figure obtained bythe algorithm of [3]. In
this algorithm, image fragments from horses in a training database are correlated with
the novel image. By combining together the segmentations ofthe fragments, the novel
image is segmented. As can be seen, the top-down segmentation is better than any of
the bottom-up segmentations but still misses important details.
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Fig. 1. The relative merits of the bottom-up and the top-down approaches, replotted from [2].
(a) Input image. (b) The bottom-up hierarchical segmentation at three different scales. (c) The
top-down approach provides a meaningful approximation forthe figureground segmentation of
the image, but may not follow exactly image discontinuities.

In recent years, several authors have therefore suggested combining top-down and
bottom-up segmentation [2, 21, 17, 6]. Borenstein et al. [2]choose among a discrete set
of possible low-level segmentations by minimizing a cost function that includes a bias
towards the top-down segmentation. In theimage parsingframework of Tu et al. [17]
object-specific detectors serve as a proposal distributionfor a data-driven Monte-Carlo
sampling over possible segmentations. In theOBJ-CUTalgorithm [6] a layered pictorial
structure is used to define a bias term for a graph-cuts energyminimization algorithm
(the energy favors segmentation boundaries occurring at image discontinuities).

These recent approaches indeed improve the quality of the achieved segmenta-
tions by combining top-down and bottom-up cues at run-time.However, the training
of the bottom-up and top-down modules is performedindependently. In the work of
Borenstein and colleagues, training the top-down module consists of choosing a set
of fragments from a huge set of possible image fragments. This training is performed
without taking into account low-level cues. In the image parsing framework [17], the
top-down module are object detectors trained using AdaBoost to maximize detection
performance. Again, this training is performed without taking into account low-level
cues. In the OBJ-CUT algorithm, the training of the algorithm is based on a set of
learned layered pictorial structures [6]. These learned models are then used to define a
detection cascade (which calculates putative part locations by comparing the image to
a small number of templates) and a bounding box for the relative part locations. Again,
the choice of which templates to apply to a given images is performed independent of
the low-level segmentation cues.

Figure 2(a) shows a potential disadvantage of training the top-down model while
ignoring low-level cues. Suppose we wish to train a segmentation algorithm for oc-
topi. Since octopi have 8 tentacles and each tentacle has multiple degrees of freedom,
any top-down algorithm would require a very complex deformable template to achieve
reasonable performance. Consider for example the top-downalgorithm of Borenstein
and Ullman [3] which tries to cover the segmentations in the dataset with a subset of
image fragments. It would obviously require a huge number offragments to achieve
reasonable performance. Similarly, the layered pictorialstructure algorithm of Kumar
et al. [6] would require a large number of parts and a complicated model for modeling
the allowed spatial configurations.
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Fig. 2. (a) Octopi: Combining low-level information can significantly reduce the required com-
plexity of a deformable model. (b) Examples from horses training data. Each training image is
provided with its segmentation mask.

While Octopi can appear in a large number of poses, their low-level segmentation
can be easy since their color is relatively uniform and (depending on the scene) may
be distinct from the background. Thus an algorithm that trains the top-down module
while taking into account the low-level cues can choose to devote far less resources
to the deformable templates. The challenge is to provide a principled framework for
simultaneous training of the top-down and bottom-up segmentation algorithms.

In this paper we provide such a framework. The algorithm we propose is simi-
lar at run-timeto the OBJ-CUT and the Borenstein et al. algorithms. As illustrated in
figure 3, at run-time a novel image is scanned with an object detector which tries all
possible subimages until it finds a subimage that is likely tocontain the object (for most
of the databases in this paper the approximate location was known so no scanning was
performed). Within that subimage we search for object partsby performing normalized
correlation with a set of fragments (each fragment scans only a portion of the subim-
age where it is likely to occur thus modeling the spatial interaction between fragment
locations). The location of a fragment gives rise to a local bias term for an energy func-
tion. In addition to the local bias, the energy function rewards segmentation boundaries
occurring at image discontinuities. The final segmentationis obtained by finding the
global minimum of the energy function.

While our algorithm is similar at run-time to existing segmentation algorithms, the
training method is unique in that itsimultaneously takes into account low-level and
high-level cues. We show that this problem can be formulated in the context ofCon-
ditional Random Fields [8, 7] which leads to a convex cost function for simultaneous
training of both the low-level and the high-level segmenter. We use the CRFs formula-
tion to derive a novel fragment selection algorithm, which allows us to efficiently learn
models with a small number of fragments. Whereas pure top-down algorithms often
require hundreds of fragments, our simultaneous learning procedure yields algorithms
with a handful of fragments that are combined with low-levelcues to efficiently com-
pute high quality segmentations.
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Fig. 3. System overview: (a) Detection algorithm applied to an input image (b) Fragments search
range, dots indicate location of maximal normalized correlation (c) Fragments local evidence,
overlaid with ground truth contour (d) Resulting segmentation contour

2 Segmentation using Conditional Random Fields

Given an imageI, we define the energy of a binary segmentation mapx as:

E(x; I) = ν
∑

i,j

wij |x(i) − x(j)| +
∑

k

λk|x − xFk,I | (1)

This energy is a combination of a pairwise low-level term anda local class-dependent
term.

The low level term is defined via a set of affinity weightsw(i, j). w(i, j) are high
when the pixels(i, j) are similar and decrease to zero when they are different. Similar-
ity can be defined using various cues including intensity, color, texture and motion as
used for bottom up image segmentation [12]. Thus minimizing

∑

i,j wij |x(i) − x(j)|
means that labeling discontinuities are cheaper when they are aligned with the image
discontinuities. In this paper we used 8-neighbors connectivity, and we set:

wij =
1

1 + σd2
ij

wheredij is theRGB difference between pixelsi andj andσ = 5 · 104.
The second part of eq 1 encodes the local bias, defined as a sum of local energy

terms each weighted by a weightλk. Following the terminology of Conditional Random
Fields, we call each such local energy term a feature. In thiswork, these local energy
terms are derived from image fragments with thresholds. To calculate the energy of a
segmentation, we shift the fragment over a small window (10 pixels in each direction)
around its location in its original image. We select the location in which the normalized
correlation between the fragment and the new image is maximal (see Fig 3(b)). The
feature is added to the energy, if this normalized correlation is large than a threshold.
Each fragment is associated with a mask fragmentxF extracted from the training set
(Fig 9 shows some fragments examples). We denote byxF,I the fragment maskxF

placed over the imageI, according to the maximal normalized correlation location. For
each fragment we add a term to the energy function which penalizes for the number of



pixels for whichx is different from the fragment maskxF,I , |x−xF,I | =
∑

i∈F |x(i)−
xF,I(i)|. Wherei ∈ F means the pixeli is covered by the fragmentF after the fragment
was moved to the maximal normalized correlation location (see Fig 3(c)).

Our goal in this paper is to learn a set of fragments{Fk}, thresholds and weights
{λk}, ν that will favor the true segmentation. In the training stagethe algorithm is
provided a set of images{It}t=1:T and their binary segmentation masks{xt}t=1:T , as
in figure 2(b). The algorithm needs to select features and weights such that minimizing
the energy with the learned parameters will provide the desired segmentation.

2.1 Conditional Random Fields

Using the energy (eq. 1) we define the likelihood of the labelsx conditioned on the
imageI as

P (x|I) =
1

Z(I)
e−E(x;I) where: Z(I) =

∑

x

e−E(x;I)

That is,x forms a Conditional Random Field (CRF) [8]. The goal of the learning process
is to select a set of fragments{Fk}, thresholds and weights{λk}, ν that will maximize
the sum of the log-likelihood over training examples:ℓ(~λ, ν; ~F ) =

∑

t ℓt(~λ, ν; ~F )

ℓt(~λ, ν; ~F ) = log P (xt|It;~λ, ν, ~F ) = −E(xt; It, ~λ, ν, ~F ) − log Z(It;~λ, ν, ~F ) (2)

The idea of the CRF log likelihood is to select parameters that will maximize the like-
lihood of the ground truth segmentation for training examples. Such parameters should
minimize the energy of the true segmentationsxt, while maximizing the energy of all
other configurations.

The CRF formulation has proven useful in many vision applications [7, 15, 14, 4, 5].
Below we review several properties of the CRF log likelihood:

1. For a given features set~F = [F1, ..., FK ], if there exists a parameter set~λ∗ =
[λ∗

1, .., λ
∗
K ], ν∗ for which the minimum of the energy function is exactly the true

segmentation:xt = arg minx E(x; It, ~λ
∗, ν∗, ~F ). Then selectingα~λ∗, αν∗ with

α → ∞ will maximize the CRF likelihood, since:P (xt|It; α~λ∗, αν∗, ~F ) = 1 (see
[10]).

2. The CRF log likelihood isconvexwith respect to the weighting parametersλk, ν as
discussed in [8].

3. The derivative of the log-likelihood with respect to the coefficient of a given fea-
ture is known to be the difference between the expected feature response, and the
observed one. This can be expressed in a simple closed form way as:

∂ℓt(~λ, ν; ~F )

∂λk

=
∂ log P (xt|It;~λ, ν, ~F )

∂λk

=
∑

i∈Fk

∑

r

pi(r)|r − xFk,It
(i)| −

∑

i∈Fk

|xt(i) − xFk,It
(i)|

= < |xt − xFk,It
| >

P (xt|It;~λ,ν, ~F ) − < |xt − xFk,It
| >Obs (3)



∂ℓt(~λ, ν; ~F )

∂ν
=

∂ log P (xt|It;~λ, ν, ~F )

∂ν

=
∑

ij

∑

rs

pij(r, s)wij |r − s| −
∑

ij

wij |xt(i) − xt(j)|

= < |xt(i) − xt(j)| >
P (xt|It;~λ,ν, ~F ) − < |xt(i) − xt(j)| >Obs(4)

Wherepi(r), pij(r, s) are the marginal probabilitiesP (xi = r|It;~λ, ν, ~F ),P (xi =

r, xj = s|It;~λ, ν, ~F ).

Suppose we are given a set of features~F = [F1, ...FK ] and the algorithm task
is to select weights~λ = [λ1, .., λK ], ν that will maximize the CRF log likelihood.
Given that the cost is convex with respect to~λ, ν it is possible to randomly initialize
the weights vector and run gradient decent, when the gradients are computed using
equations 3,4. Note that gradient decent can be used for selecting the optimal weights,
without computing the explicit CRF log likelihood (eq 2).

Exact computation of the derivatives is intractable, due tothe difficulty in com-
puting the marginal probabilitiespi(r), pij(r, s). However, any approximate method
for estimating marginal probabilities can be used. One approach for approximating the
marginal probabilities is using Monte Carlo sampling, likein [4, 1]. An alternative ap-
proach is to approximate the marginal probabilities using the beliefs output of sum
product belief propagation or generalized belief propagation. Similarly, an exact com-
putation of the CRF log likelihood (eq 2) is challenging due to the need to compute the
log-partition functionZ(I) =

∫

x
e−E(x;I). Exact computation ofZ(I) is in general in-

tractable (except for tree structured graphs). However, approximate inference methods
can be used here as well, such as the Bethe free energy or the Kikuchi approxima-
tions [20]. Monte-Carlo methods can also be used. In this work we have approximated
the marginal probabilities and the partition function using sum product tree-reweighted
belief propagation [18], which provides a rigorous bound onthe partition function, and
has better convergence properties than standard belief propagation. Tree reweighted
belief propagation is described in the Appendix.

2.2 Features Selection

The learning algorithm starts with a large pool of candidatelocal features.
In this work we created a2, 000 features pool, by extracting image fragments from

training images. Fragments are extracted at random sizes and random locations. The
learning goal is to select from the features pool a small subset of features that will
construct the energy functionE, in a way that will maximize the conditional log likeli-
hood

∑

t log P (xt|It). Since the goal is to select a small subset of features out of abig
pool, the required learning algorithm for this applicationis more than a simple gradient
decent.

Let Ek denote the energy function at thek’th iteration. The algorithm initializesE0

with the pairwise term and adds local features in an iterative greedy way, such that in
each iteration a single feature is added:Ek(x; I) = Ek−1(x; I) + λk|x − xFk,I |. In
each iteration we would like to add the featureFk that will maximize the conditional



log likelihood. We denote byLk(F, λ) the possible likelihood if the featureF , weighted
by λ, is added at thek’th iteration:

Lk(F, λ) = ℓ(~λk−1, λ, ν; ~Fk−1, F ) =
∑

t

log P (xt|It; Ek−1(xt; It) + λ|xt − xF,It
| )

Straightforward computation of the likelihood improvement is not practical since in
each iteration, it will require inference for each candidate feature and for every possible
weight λ we may assign to this feature. For example, suppose we have50 training
images, we want to scan2, 000 features,2 possibleλ values, and we want to perform
10 features selection iterations. This results in2, 000, 000 inference operations. Given
that each inference operation itself is not a cheap process,the resulting computation
can not be performed in a reasonable time. However, we suggest that by using a first-
order approximation to the log likelihood, one can efficiently learn a small number of
effective features. Similar ideas in other contexts have been proposed by [23, 9, 13].

Observation: A first order approximation to the conditional log likelihood can be
computed efficiently, without a specific inference process per feature.

Proof:

Lk(F, λ) ≈ ℓk−1(~λk−1, ν) + λ
∂Lk(F, λ)

∂λ

∣

∣

∣

∣

λ=0

(5)

where

∂Lk(F, λ)

∂λ

∣

∣

∣

∣

λ=0

=
∑

t

< |xt − xF,It
| >

P (xt|It;~λk−1,ν, ~Fk−1) − < |xt − xF,It
| >Obs

(6)
andℓk−1(~λk−1, ν) =

∑

t log P (xt|It; Ek−1). We note that computing the above first
order approximation requires a single inference process onthe previous iteration energy
Ek−1, from which the local beliefs (approximated marginal probabilities) {bk−1

t,i } are
computed. Since the gradient is evaluated at the pointλ = 0, it can be computed using
the k − 1 iteration beliefs and there is no need for a specific inference process per
feature.

Computing the first order approximation for each of the training images is linear
in the filter size. This enables scanning thousands of candidate features within sev-
eral minutes. As evident from the gradient formula (eq 6) anddemonstrated in the
experiments section, the algorithm tends to select fragments that: (1) have low er-
ror in the training set (since it attempts to minimize< |xt − xF,It

| >Obs) and (2)
are not already accounted for by the existing model (since itattempts to maximize
< |xt − xF,It

| >
P (xt|It;~λk−1,ν, ~Fk−1)).

Once the first order approximations have been calculated we can select a small set
of the featuresFk1

...FkN
with the largest approximated likelihood gains. For each of

the selected features, and for each of a small discrete set ofpossibleλ valuesλ ∈
{λ1, ..., λM}, we run an inference process and evaluate the explicit conditional log
likelihood. The optimal feature (and scale) is selected andadded to the energy function
E. The features selection steps are summarized in Algorithm 1.

Once a number of features have been selected, we also optimize the choice of
weights{λk}, ν using several gradient decent steps. Since the cost is convex with re-
spect to the weights a local optimum is not an issue.



Algorithm 1 : Features Selection
Initialization:E0(xt; It) = ν

P

ij
wij |xt(i) − xt(j)|.

for k=1 to maxItr

1. Run tree-reweighted belief propagation using thek−1 iteration energyEk−1(xt; It). Com-
pute local beliefs{bk−1

t,i }.
2. For each featureF compute the approximated likelihood using eq 5.

Select theN featuresFk1
...FkN

with largest approximated likelihood gains.
3. For each of the featuresFk1

...FkN
, and for each scaleλ ∈ {λ1, ..., λM}, run tree-

reweighted belief propagation and compute the likelihoodLk(Fkn , λm)
4. Select the feature and scale with maximal likelihood gain:

(Fkn , λ
m) = arg max

n=1:N, m=1:M
Lk(Fkn , λ

m)

Setλk = λm, Fk = Fkn , Ek(x; I) = Ek−1(x; I) + λk|x − xFk,I |.

2.3 Bounding the log-likelihood gain

Consider thek’th feature selection iteration. In this iteration one is given an energy
functionEk−1(x; I), and tests the option of adding the energy function a feature(F, λ):

Ek(x; I) = Ek−1(x; I) + F (x; I)

where we useF (x; I) as a shortcut forλ|x − xF,I |. The new log-likelihood can be
expressed as:

Lk(F, λ) = ℓk−1 +
∑

t

− ln < e−F (xt;It) >Pk−1(xt,It) − < F (xt; It) >Obs

The above formula isexact, and is easily derived from the fact that ifP1(x) =
1

Z1

e−E1(x) andP2(x) = 1
Z2

e−E2(x), then the ratio of partition functions isZ2/Z1 =<

eE1−E2 >P1
.

This is closely related to the first-order approximation. Assuming thatF is closely
concentrated around its mean value (e.g. at small temperatures) one can replace the
expectation and the log:ln < e−F >≈< −F >, and get the familiar first order ap-
proximation:

Lk(F, λ) ≈ ℓk−1 +
∑

t

< F (xt; It) >Pk−1(xt,It) − < F (xt; It) >Obs

A second result is that the first-order approximation isa rigorous upper boundon the
log-likelihood:

− ln < e−F >Pk−1
≤ < F >Pk−1

This follows from Jensen’s inequality and can also be provendirectly from the convex-
ity of the log likelihood. Since the first order approximation is an upper bound, we know
that we do not have to consider fragments whose first order approximation is small, as
such fragments must have smaller likelihood gain.



3 Experiments

In our first experiment we tried to segment a synthetic octopus dataset. Few sample
images are shown in Fig 4. It’s clear that our synthetic octopi are highly non rigid
objects. Any effort to fully cover all the octopi tentacles with fragments (like [2, 11,
6]), will require a huge number of different fragments. On the other hand, there is a lot
of edges information in the images that can guide the segmentation. The first feature
selected by our algorithm is located on the octopi head, which is a rigid part common
to all examples. This single feature, combined with pairwise constraints was enough to
propagate the true segmentation to the entire image. The MAPsegmentation given the
selected feature is shown in Fig 4.

We then tested our algorithm on three real datasets, of horses [3, 2], cars and
cows [11]. We measured the percentage of mislabeled pixels in the segmented images
on training and testing images, as more fragments are learned. Those are shown for the
horses in Fig 5(a), for the cars in Fig 5(b), and for the cows inFig 5(c). Note that after
selecting 3 fragments our algorithm performs at over 95% correct on test data for the
horse dataset. The algorithm of Borenstein et al. [2] performed at95% for pixels in
which its confidence was over0.1 and at66% for the rest of the pixels. Thus our overall
performance seems comparable (if not better) even though weused far less fragments.
The OBJ-CUT algorithm also performs at around 96% for a subset of this dataset using
a LPS model of 10 parts whose likelihood function takes into consideration chamfer
distance and texture and is therefore significantly more complex than normalized cor-
relation.

In the horses, cars and cows experiments we rely on the fact that we are searching
for a shape in the center of the window, and used an additionallocal feature predicting
that the pixels lying on the boundary of the subimage should be labeled as background.

In Fig 6 we present several testing images of horses, the ground truth segmentation,
the local features responses and the inferred segmentation. While low level information
adds a lot of power to the segmentation process, it can also bemisleading. For example,
the image on the right of Fig 10 demonstrates the weakness of the low level information.

In Fig 7 we present segmentation results on cars test images,for an energy function
consisting of 2 features, and in Fig 8 we present segmentation results on cows test
images, for an energy function consisting of 4 features. Thesegmentation in the cows
case is not as good as in the horses’ case, especially in the legs. We note that in most of
these examples the legs are in a different color than the cow body, hence the low-level
information can not easily propagate labeling from the cow body to its legs. The low
level cue we use in the work is quite simple- based only on the RGB difference between
neighboring pixels. It’s possible that using more sophisticated edges detectors [12] will
enable a better propagation.

The first 3 horse fragments that were selected by the algorithm are shown in Fig 9.
In Fig 10 we illustrate the first 3 training iterations on several training images. Quite
a good segmentation can be obtained even when the response ofthe selected features
does not cover the entire image. For example the first fragment was located around
the horse’s front legs. As can be seen in the first 3 columns of Fig 10, some images
can be segmented quite well based on this single local feature. We can also see that
the algorithm tends to select new features in image areas that were mislabeled in the



previous iterations. For example, in several horses (mainly the 3 middle columns) there
is still a problem in the upper part, and the algorithm therefore selects a second feature in
the upper part of the horse. Once the second fragment was added there are still several
mislabeled head areas (see the 3 right columns), and as a result the 3rd fragment is
located on the horse head.

Fig. 4. Results on synthetic octopus data. Top: Input images. Middle: response of the local feature,
with the ground truth segmentation contour overlaid in red.Bottom: MAP segmentation contour
overlaid on input image.

4 Discussion

Evidence from human vision suggests that humans utilize significant top-down infor-
mation when performing segmentation. Recent works in computer vision also suggest
that segmentation performance in difficult scenes is best approached by combining top-
down and bottom-up cues. In this paper we presented an algorithm that learns how
to combine these two disparate sources of information into asingle energy function.
We showed how to formulate the problem as that of estimation in Conditional Random
Fields. We used the CRF formulation to derive a novel fragment selection algorithm that
allowed us to efficiently search over thousands of image fragments for a small number
of fragments that will improve the segmentation performance. Our learned algorithm
achieves state-of-the-art performance with a small numberof fragments combined with
very rudimentary low-level cues.

Both the top-down module and the bottom-up module that we used can be signifi-
cantly improved. Our top-down module translates an image fragment and searches for
the best normalized correlation, while other algorithms also allow rescaling and rota-
tion of the parts and use more sophisticated image similarity metrics. Our bottom-up
module uses only local intensity as an affinity function between pixels, whereas other
algorithms have successfully used texture and contour as well. In fact, one advantage
of the CRFs framework is that we can learn the relative weights of different affinity
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Fig. 5. Percents of miss-classified pixels: (a) Horses data (b) Carsdata (c) Cows data. Note that
after 4 fragments our algorithm performs at over 95% correcton test data for the horse dataset.
These results are comparable if not better than [2, 6] while using a simpler model.

Fig. 6. Testing results on horses data. Top row: Input images. Second row: Response of the local
features and the boundary feature, with the ground truth segmentation contour overlaid in red.
Bottom row: MAP segmentation contour overlaid on input image.

functions. We believe that by improving both the low-level and high-level cues we will
obtain even better performance on the challenging task of image segmentation.



Fig. 7. Testing results on cars data. Top row: Input images. Second row: Response of the local
features and the boundary feature, with the ground truth segmentation contour overlaid in red.
Bottom row: MAP segmentation contour overlaid on input image.

Fig. 8. Testing results on cows’ data with 4 features. Top row: Inputimages. Second row: Re-
sponse of the local features and the boundary feature, with the ground truth segmentation contour
overlaid in red. Bottom row: MAP segmentation contour overlaid on input image.

Fig. 9. The first 3 horse fragments selected by the learning algorithm

5 Appendix: Tree-reweighted Belief Propagation and
Tree-reweighted Upper Bound

In this section we summarize the basic formulas from [18] forapplying tree-rewighted
belief propagation and for computing the tree-rewighted upper bound.

For a given graphG, we letµ
e

= {µe|e ∈ E(G)} represent a vector of edge appear-
ance probabilities. That is,µe is the probability that the edgee appears in a spanning tree



(Input Images)

(One Fragment)

(Two Fragments)

(Three Fragments)

Fig. 10. Training results on horses data. For each group: Top row - response of the local features
and the boundary feature, with the ground truth segmentation contour overlaid in red. Middle row
- MAP segmentation. Bottom row - MAP segmentation contour overlaid on input image.

of the graphG, chosen under a particular distribution on spanning trees.For 2D-grid
graphs with 4-neighbors connectivity a reasonable choice of edges distributions isµ

e
=

{

µe = 1
2 |e ∈ E(G)

}

and for 8-neighbors connectivity,µ
e

=
{

µe = 1
4 |e ∈ E(G)

}

.
The edge appearance probabilities are used for defining a tree-rewighted mas-

sages passing scheme. Denote the graph potentials as:Ψi(xi) = e−Ei(xi),
Ψij(xi, xj) = e−Eij(xi,xj), and assumeP (x) can be factorized as:P (x) ∝
∏

i Ψi(xi)
∏

i,j Ψij(xi, xj). The tree-rewighted massages passing scheme is defined as
follows:



1. Initialize the messagesm0 = m0
ij with arbitrary positive real numbers.

2. For iterations n=1,2,3,... update the messages as follows:

mn+1
ji (xi) = κ

∑

x′

j

exp(−
1

µij

Eij(xi, x
′
j)−Ej(x

′
j))







∏

k∈Γ (j)\i

[

mn
kj(x

′
j)

]µkj

[

mn
ij(x

′
j)

](1−µji)







whereκ is a normalization factor such that
∑

xi
mn

ji(xi) = 1.

The process converges whenmn+1
ji = mn

ji for everyij.
Once the process has converged, the messages can be used for computing the local

and pairwise beliefs:

bi(xi) = κ exp(−Ei(xi))
∏

k∈Γ (i)

[mki(xi)]
µki (7)

bij(xi, xj) = κ exp(−
1

µij

Eij(xi, xj) − Ei(xi) − Ej(xj))

∏

k∈Γ (i)\j [mki(xi)]
µki

[mji(xi)]
(1−µij)

∏

k∈Γ (j)\i [mkj(xj)]
µkj

[mij(xj)]
(1−µji)

(8)

We define a pseudo-marginals vector~q = {qi, qij} as a vector satisfying:
∑

xi
qi(xi) = 1 and

∑

xj
qij(xi, xj) = qi(xi). In particular, the beliefs vectors in

equations 7,8 are a peseudo-marginals vector. We use the peseudo-marginals vectors
for computing the tree-rewighted upper bound.

Denote byθ the energy vectorθ = {Ei, Eij}. We define an “average energy”
term as:~q · θ =

∑

i

∑

xi
−qi(xi)Ei(xi) +

∑

ij

∑

xi,xj
−qij(xi, xj)Eij(xi, xj). We

define the single node entropy:Hi(qi) = −
∑

xi
qi(xi) log qi(xi). Similarly, we de-

fine the mutual information betweeni and j, measured underqij as: Iij(qij) =
∑

xi,xj
qij(xi, xj) log

qij(xi,xj)
„

P

x′

j
qij(xi,x

′

j)

«

“

P

x′

i
qij(x′

i,xj)
”

. This is used to define a free en-

ergy:F(~q; µ
e
; θ) , −

∑

i Hi(qi) +
∑

ij µijIij(qij) − ~q · θ.
In [18] Wainwright et al prove thatF(~q; µ

e
; θ) provides an upper bound for the log

partition function:

log Z =

∫

x

exp(−
∑

i

Ei(xi) −
∑

ij

Eij(xi, xj)) ≤ F(~q; µ
e
; θ)

They also show that the free energyF(~q; µ
e
; θ) is minimized using the peseudo-

marginals vector~b defined using the tree-rewighted messages passing output. Therefore
the tighter upper bound onlog Z is provided by~b.

This result follows the line of approximations to the log partition function using
free energy functions. As stated in [20], when standard belief propagation converges,
the output beliefs vector is a stationary point of the bethe free energy function, and
when generalized belief propagation converges, the outputbeliefs vector is a stationary
point of the Kikuchi free energy function. However, unlike the bethe free energy and



Kikuchi approximations, the tree-rewighted free energy isconvexwith respect to the
peseudo-marginals vector, and hence tree-rewighted belief propagation can not end in
a local minima.

A second useful property of using the tree-rewighted upper bound as an approxi-
mation for the log partition function, is that computing thelikelihood derivatives (equa-
tions 3-4) using the beliefs output of tree-rewighted massages passing, will result in
exactderivatives for the upper bound approximation.

In this paper we usedF(~b; µ
e
; θ) as an approximation for the log partition func-

tion, where~b is the output of tree-rewighted belief propagation. We alsoused the tree-
rewighted beliefs~b in the derivatives computation (equations 3-4), as our approxima-
tion for the marginal probabilities.
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